Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-24T06:51:28.278Z Has data issue: false hasContentIssue false

Manipulation and statistical analysis of the fluid flow of polymer semiconductor solutions during meniscus-guided coating

Published online by Cambridge University Press:  18 December 2020

Leo Shaw
Affiliation:
Department of Chemical Engineering, Stanford University, USA
Ying Diao
Affiliation:
Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, USA
Geoffrey C. Martin-Noble
Affiliation:
Department of Chemical Engineering, Stanford University, USA
Hongping Yan
Affiliation:
Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, USA
Pascal Hayoz
Affiliation:
BASF Schweiz AG, Schweizerhalle, Switzerland
R. Thomas Weitz
Affiliation:
I. Physikalisches Institut, Georg-August-Universität Göttingen, Germany
Daniel Kaelblein*
Affiliation:
BASF SE, Ludwigshafen, Germany
Michael F. Toney*
Affiliation:
Department of Chemical and Biological Engineering, University of Colorado Boulder, USA
Zhenan Bao*
Affiliation:
Department of Chemical Engineering, Stanford University, USA
*
*Corresponding authors: Daniel Kaelblein, [email protected]; Michael F. Toney, [email protected]; Zhenan Bao, [email protected]
*Corresponding authors: Daniel Kaelblein, [email protected]; Michael F. Toney, [email protected]; Zhenan Bao, [email protected]
*Corresponding authors: Daniel Kaelblein, [email protected]; Michael F. Toney, [email protected]; Zhenan Bao, [email protected]
Get access

Abstract

Recent work in structure–processing relationships of polymer semiconductors have demonstrated the versatility and control of thin-film microstructure offered by meniscus-guided coating (MGC) techniques. Here, we analyze the qualitative and quantitative aspects of solution shearing, a model MGC method, using coating blades augmented with arrays of pillars. The pillars induce local regions of high strain rates—both shear and extensional—not otherwise possible with unmodified blades, and we use fluid mechanical simulations to model and study a variety of pillar spacings and densities. We then perform a statistical analysis of 130 simulation variables to find correlations with three dependent variables of interest: thin-film degree of crystallinity and transistor field-effect mobilities for charge-transport parallel (μpara) and perpendicular (μperp) to the coating direction. Our study suggests that simple fluid mechanical models can reproduce substantive correlations between the induced fluid flow and important performance metrics, providing a methodology for optimizing blade design.

Type
Article
Copyright
Copyright © The Author(s), 2020, published on behalf of Materials Research Society by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Polymer semiconductors have opened up a new frontier of electronics that can be flexible, stretchable, implantable, or biodegradable. While the chemical and electronic properties of these materials are important for their function as the active material in organic electronic devices, the manner by which these organic semiconductors are deposited onto a substrate can significantly influence its charge-transport properties.While a variety of techniques have been investigated to enhance charge-transport behavior, there are few reports approaching the issue in terms of the fluid dynamical considerations relevant during deposition from the solution phase. In this article, we analyze the fluid flow that occurs during thin-film deposition by solution shearing, a representative meniscus-guided coating method amenable to high-throughput processing. We investigate a variety of variables related to fluid flow that can be estimated from fluid mechanical simulations of solution shearing with a coating blade patterned with a regular array of pillars used to induce higher fluid strain rates. We find correlations suggestive of underlying relationships between strain rates associated with certain directions and polymer charge-transport properties in the final deposited film. This article establishes a statistical approach using simulation data that can guide patterned blade design to enhance polymer deposition and realize high-performance devices.

References

Chortos, A., Liu, J., Bao, Z., Pursuing prosthetic electronic skin , Nat Mater. 15, 937 (2016).CrossRefGoogle ScholarPubMed
Bao, Z., Chen, X., Flexible and stretchable devices, Adv. Mater. 28, 4177 (2016).CrossRefGoogle Scholar
Kang, J., Tok, J.B.H., Bao, Z., Self-healing soft electronics , Nat. Electron. 2, 144 (2019).CrossRefGoogle Scholar
Diao, Y., Shaw, L., Bao, Z., Mannsfeld, S.C.B., Morphology control strategies for solution-processed organic semiconductor thin films , Energy Environ. Sci. 7, 2145 (2014).CrossRefGoogle Scholar
Gu, X., Shaw, L., Gu, K., Toney, M.F., Bao, Z., The meniscus-guided deposition of semiconducting polymers , Nat. Commun. 9, 534 (2018).CrossRefGoogle ScholarPubMed
Shaw, L., Yan, H., Gu, X., Hayoz, P., Weitz, R.T., Kaelblein, D., Toney, M.F., Bao, Z., Microstructural evolution of the thin films of a donor–acceptor semiconducting polymer deposited by meniscus-guided coating , Macromolecules 51, 4325 (2018).CrossRefGoogle Scholar
Lee, F.L., Farimani, A.B., Gu, K.L., Yan, H., Toney, M.F., Bao, Z., Pande, V.S., Solution-phase conformation and dynamics of conjugated isoindigo-based donor–acceptor polymer single chains , J. Phys. Chem. Lett. 8, 5479 (2017).CrossRefGoogle ScholarPubMed
Mendels, D., Tessler, N., A comprehensive study of the effects of chain morphology on the transport properties of amorphous polymer films , Sci. Rep. 6, 29092 (2016).CrossRefGoogle ScholarPubMed
Maturová, K., van Bavel, S.S., Wienk, M.M., Janssen, R.A.J., Kemerink, M., Morphological device model for organic bulk heterojunction solar cells , Nano Lett. 9, 3032 (2009).CrossRefGoogle ScholarPubMed
Wodo, O., Ganapathysubramanian, B., Modeling morphology evolution during solvent-based fabrication of organic solar cells , Comput. Mater. Sci. 55, 113 (2012).CrossRefGoogle Scholar
Xu, J., Wu, H.-C., Zhu, C., Ehrlich, A., Shaw, L., Nikolka, M., Wang, S., Molina-Lopez, F., Gu, X., Luo, S., Zhou, D., Kim, Y.-H., Wang, G.-J. N., Gu, K., Feig, V.R., Chen, S., Kim, Y., Katsumata, T., Zheng, Y.-Q., Yan, H., Chung, J.W., Lopez, J., Murmann, B., Bao, Z., Multiscale ordering in highly stretchable polymer semiconducting films , Nat. Mater. 18, 594 (2019).CrossRefGoogle Scholar
Diao, Y., Tee, B.C.K., Giri, G., Xu, J., Kim, D.H., Becerril, H.A., Stoltenberg, R.M., Lee, T.H., Xue, G., Mannsfeld, S.C.B., Bao, Z., Solution coating of large-area organic semiconductor thin films with aligned single-crystalline domains , Nat. Mater. 12, 665 (2013).CrossRefGoogle ScholarPubMed
Diao, Y., Zhou, Y., Kurosawa, T., Shaw, L., Wang, C., Park, S., Guo, Y., Reinspach, J.A., Gu, K., Gu, X., Tee, B.C.K., Pang, C., Yan, H., Zhao, D., Toney, M.F., Mannsfeld, S.C.B., Bao, Z., Flow-enhanced solution printing of all-polymer solar cells , Nat. Commun. 6, 7955 (2015).CrossRefGoogle ScholarPubMed
Zhong, M., Li, Y., Du, G., Li, Y., Chang, K., Lau, T.-K., Lu, X., Sun, H., Guo, X., Guo, Y.-F., Zhao, X., Deng, W., Soft porous blade printing of non-fullerene organic solar cells , ACS Appl. Mater. Interfaces 12 (23), 25852 (2020).CrossRefGoogle Scholar
Leal, L., Advanced Transport Phenomena: Fluid Mechanics and Convective Transport Processes, Cambridge Series in Chemical Engineering (Cambridge University Press , UK, 2007).CrossRefGoogle Scholar
Aris, R., Vectors, Tensors and the Basic Equations of Fluid Mechanics, Dover Books on Engineering (Dover Publications , New York, 1989).Google Scholar
Smith, D.E., Babcock, H.P., Chu, S., Single-polymer dynamics in steady shear flow , Science 283, 1724 (1999).CrossRefGoogle ScholarPubMed
Schunk, P.R., Scriven, L.E., Constitutive equation for modeling mixed extension and shear in polymer solution processing , J. Rheol. 34, 1085 (1990).CrossRefGoogle Scholar
Venkateshvaran, D., Nikolka, M., Sadhanala, A., Lemaur, V., Zelazny, M., Kepa, M., Hurhangee, M., Kronemeijer, A.J., Pecunia, V., Nasrallah, I., Romanov, I., Broch, K., McCulloch, I., Emin, D., Olivier, Y., Cornil, J., Beljonne, D., Sirringhaus, H., Approaching disorder-free transport in high-mobility conjugated polymers , Nature 515, 384 (2014).CrossRefGoogle ScholarPubMed
Noriega, R., Rivnay, J., Vandewal, K., Koch, F.P.V., Stingelin, N., Smith, P., Toney, M.F., Salleo, A., A general relationship between disorder, aggregation and charge transport in conjugated polymers , Nat. Mater. 12, 1038 (2013).CrossRefGoogle ScholarPubMed
Wang, S., Fabiano, S., Himmelberger, S., Puzinas, S., Crispin, X., Salleo, A., Berggren, M., Experimental evidence that short-range intermolecular aggregation is sufficient for efficient charge transport in conjugated polymers , Proc. Nat. Acad. Sci. USA 112, 10599 (2015).CrossRefGoogle ScholarPubMed
Chang, M., Lim, G.T., Park, B., Reichmanis, E., Control of molecular ordering, alignment, and charge transport in solution-processed conjugated polymer thin films , Polymers 9 (6), 212 (2017).CrossRefGoogle ScholarPubMed
Pennings, A.J., Bundle-like nucleation and longitudinal growth of fibrillar polymer crystals from flowing solutions , J. Polym. Sci.: Polym. Symp. 59, 55 (1977).Google Scholar
Kumaraswamy, G., Kornfield, J.A., Yeh, F., Hsiao, B.S., Shear-enhanced crystallization in isotactic polypropylene 3, Evidence for a kinetic pathway to nucleation , Macromolecules 35, 1762 (2002).CrossRefGoogle Scholar
Wang, G., Feng, L.-W., Huang, W., Mukherjee, S., Chen, Y., Shen, D., Wang, B., Strzalka, J., Zheng, D., Melkonyan, F.S., Yan, J., Stoddart, J.F., Fabiano, S., DeLongchamp, D.M., Zhu, M., Facchetti, A., Marks, T.J., Mixed-flow design for microfluidic printing of twocomponent polymer semiconductor systems , Proc. Nat. Acad. Sci. USA 117, 17551 (2020).CrossRefGoogle Scholar
Wang, G., Chu, P.-H., Fu, B., He, Z., Kleinhenz, N., Yuan, Z., Mao, Y., Wang, H., Reichmanis, E., Conjugated polymer alignment: Synergisms derived from microfluidic shear design and UV irradiation , ACS Appl. Mater. Interfaces 8, 24761 (2016).CrossRefGoogle ScholarPubMed
Shaw, L., Hayoz, P., Diao, Y., Reinspach, J.A., To, J.W.F., Toney, M.F., Weitz, R.T., Bao, Z., Direct uniaxial alignment of a donor-acceptor semiconducting polymer using single-step solution shearing , ACS Appl. Mater. Interfaces 8, 9285 (2016).CrossRefGoogle ScholarPubMed
Wasserstein, R.L., Lazar, N.A., The ASA's statement on p-values: Context, process, and purpose , Am. Stat. 70, 129 (2016).CrossRefGoogle Scholar
Halsey, L.G., Curran-Everett, D., Vowler, S.L., Drummond, G.B., The fickle P value generates irreproducible results , Nat. Methods 12, 179 (2015).CrossRefGoogle ScholarPubMed
Benjamin, D.J., Berger, J.O., Three recommendations for improving the use of p-values , Am. Stat. 73, 186 (2019).CrossRefGoogle Scholar
McHugh, A.J., Forrest, E.H., A discussion of nucleation and growth in flow-induced crystallization from solution and an improved model for the growth process , J. Macromol. Sci. B 11, 219 (1975).CrossRefGoogle Scholar
Dairanieh, I.S., Mchugh, A.J., Doufas, A.K., A phenomenological model for flow-induced crystallization , J. Reinforced Plast. Compos. 18, 464 (1999).CrossRefGoogle Scholar
Chang, M., Su, Z., Egap, E., Alignment and charge transport of one-dimensional conjugated polymer nanowires in insulating polymer blends , Macromolecules 49, 9449 (2016).CrossRefGoogle Scholar
Chang, M., Choi, D., Egap, E., Macroscopic alignment of one-dimensional conjugated polymer nanocrystallites for high-mobility organic field-effect transistors , ACS Appl. Mater. Interfaces 8, 13484 (2016).CrossRefGoogle ScholarPubMed
Le Berre, M., Chen, Y., Baigl, D., From convective assembly to Landau-Levich deposition of multilayered phospholipid films of controlled thickness , Langmuir 25, 2554 (2009).CrossRefGoogle ScholarPubMed
Doumenc, F., Guerrier, B., Drying of a solution in a meniscus: A model coupling the liquid and the gas phases , Langmuir 26, 13959 (2010).CrossRefGoogle Scholar
Ternet, D.J., Larson, R.G., Leal, L.G., Flow-aligning and tumbling in small-molecule liquid crystals: pure components and mixtures , Rheol. Acta 38, 183 (1999).CrossRefGoogle Scholar
Rogowski, R.Z., Darhuber, A.A., Crystal growth near moving contact lines on homogeneous and chemically patterned surfaces , Langmuir 26, 11485 (2010).CrossRefGoogle ScholarPubMed
Jing, G., Bodiguel, H., Doumenc, F., Sultan, E., Guerrier, B., Drying of colloidal suspensions and polymer solutions near the contact line: Deposit thickness at low capillary number , Langmuir 26, 2288 (2010).CrossRefGoogle ScholarPubMed
Bijleveld, J.C., Zoombelt, A.P., Mathijssen, S.G.J., Wienk, M.M., Turbiez, M., de Leeuw, D.M., Janssen, R.A.J., Poly(diketopyrrolopyrrole-terthiophene) for ambipolar logic and photovoltaics , J. Am. Chem. Soc. 131, 16616 (2009).CrossRefGoogle ScholarPubMed
Baker, J.L., Jimison, L.H., Mannsfeld, S., Volkman, S., Yin, S., Subramanian, V., Salleo, A., Alivisatos, A.P., Toney, M.F., Quantification of thin film crystallographic orientation using X-ray diffraction with an area detector , Langmuir 26, 9146 (2010).CrossRefGoogle ScholarPubMed
Jimison, L.H., Himmelberger, S., Duong, D.T., Rivnay, J., Toney, M.F., Salleo, A., Vertical confinement and interface effects on the microstructure and charge transport of P3HT thin films , J. Polym. Sci. B Polym. Phys. 51, 611 (2013).CrossRefGoogle Scholar
Supplementary material: File

Shaw et al. Supplementary Material

Shaw et al. Supplementary Material

Download Shaw et al. Supplementary Material(File)
File 3.9 MB