Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-26T11:03:15.194Z Has data issue: false hasContentIssue false

Magnetic field-directed self-assembly of magnetic nanoparticles

Published online by Cambridge University Press:  13 November 2013

Joseph B. Tracy
Affiliation:
North Carolina State University, USA;[email protected]
Thomas M. Crawford
Affiliation:
University of South Carolina, USA;[email protected]
Get access

Abstract

This article reviews the principles of magnetic field-directed self-assembly (MFDSA) of magnetic nanoparticles (MNPs), along with recent studies that advance the fundamental understanding and potential capabilities of MNP MFDSA. This technology could eventually find application in manufacturing novel materials and components for biomedicine, energy, optics, functional composites, and microfluidics. In MFDSA, an externally applied field drives the assembly of MNPs. Uniform fields can create complex chains of MNPs, while inhomogeneous fields (such as those created by permanent magnets) apply attractive forces to MNPs that pull them toward the region of strongest field strength. Thus, MNPs can be self-organized as well as directed into user-designed patterns by controlling the external field arrangement. Because of its biocompatibility, nanoscale resolution, and low cost, MFDSA is a highly versatile technique that could enable high volume nanomanufacturing of MNPs into complex, finished materials.

Type
Magnetic Nanoparticles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Whitesides, G.M., Grzybowski, B., Science 295, 2418 (2002).CrossRefGoogle Scholar
Elemans, J.A.A.W., Rowan, A.E., Nolte, R.J.M., J. Mater. Chem. 13, 2661 (2003).CrossRefGoogle Scholar
Winfree, E., Liu, F., Wenzler, L.A., Seeman, N.C., Nature 394, 539 (1998).CrossRefGoogle Scholar
Rothemund, P.W.K., Nature 440, 297 (2006).CrossRefGoogle Scholar
Bishop, K.J.M., Wilmer, C.E., Soh, S., Grzybowski, B.A., Small 5, 1600 (2009).CrossRefGoogle Scholar
Gilbert, T.L., IEEE Trans. Magn. 40, 3443 (2004).CrossRefGoogle Scholar
Reitz, J.R., Milford, F.J., Christy, R.W., Foundations of Electromagnetic Theory (3rd edition) (Addison-Wesley, NY, 1980).Google Scholar
Krycka, K.L., Booth, R.A., Hogg, C.R., Ijiri, Y., Borchers, J.A., Chen, W.C., Watson, S.M., Laver, M., Gentile, T.R., Dedon, L.R., Harris, S., Rhyne, J.J., Majetich, S.A., Phys. Rev. Lett. 104, 207203 (2010).CrossRefGoogle Scholar
Cullity, B.D., Introduction to Magnetic Materials (Addison-Wesley, NY, 1972).Google Scholar
Wang, S.X., Taratorin, A., Magnetic Information Storage Technology (Academic Press, San Diego, 1999).Google Scholar
Lim, J., Tan, D.X., Lanni, F., Tilton, R.D., Majetich, S.A., J. Magn. Magn. Mater. 321, 1557 (2009).CrossRefGoogle Scholar
Gerber, R., Takayasu, M., Friedlaender, F.J., IEEE Trans. Magn. 19, 2115 (1983).Google Scholar
Gerber, R., IEEE Trans. Magn. 20, 1159 (1984).CrossRefGoogle Scholar
Takayasu, M., Gerber, R., Friedlaender, F.J., IEEE Trans. Magn. 19, 2112 (1983).CrossRefGoogle Scholar
Furlani, E.P., J. Appl. Phys. 99, 024912 (2006).CrossRefGoogle Scholar
Liu, J., Lawrence, E.M., Wu, A., Ivey, M.L., Flores, G.A., Javier, K., Bibette, J., Richard, J., Phys. Rev. Lett. 74, 2828 (1995).CrossRefGoogle Scholar
Tripp, S.L., Pusztay, S.V., Ribbe, A.E., Wei, A., J. Am. Chem. Soc. 124, 7914 (2002).CrossRefGoogle Scholar
Wang, H., Chen, Q.-W., Sun, Y.-B., Wang, M.-S., Sun, L.-X., Yan, W.-S., Langmuir 26, 5957 (2010).CrossRefGoogle ScholarPubMed
Thomas, J.R., J. Appl. Phys. 37, 2914 (1966).Google Scholar
Butter, K., Bomans, P.H.H., Frederik, P.M., Vroege, G.J., Philipse, A.P., Nat. Mater. 2, 88 (2003).CrossRefGoogle Scholar
Korth, B.D., Keng, P., Shim, I., Bowles, S.E., Tang, C., Kowalewski, T., Nebesny, K.W., Pyun, J., J. Am. Chem. Soc. 128, 6562 (2006).CrossRefGoogle Scholar
Klokkenburg, M., Erné, B.H., Meeldijk, J.D., Wiedenmann, A., Petukhov, A.V., Dullens, R.P.A., Philipse, A.P., Phys. Rev. Lett. 97, 185702 (2006).CrossRefGoogle Scholar
Keng, P.Y., Shim, I., Korth, B.D., Douglas, J.F., Pyun, J., ACS Nano 1, 279 (2007).Google Scholar
Faivre, D., Schüler, D., Chem. Rev. 108, 4875 (2008).CrossRefGoogle Scholar
Blakemore, R.P., Annu. Rev. Microbiol. 36, 217 (1982).CrossRefGoogle Scholar
Wang, M., He, L., Yin, Y., Mater. Today 16, 110 (2013).CrossRefGoogle Scholar
Xu, X., Friedman, G., Humfeld, K.D., Majetich, S.A., Asher, S.A., Adv. Mater. 13, 1681 (2001).Google Scholar
Xu, X., Friedman, G., Humfeld, K.D., Majetich, S.A., Asher, S.A., Chem. Mater. 14, 1249 (2001).Google Scholar
Lalatonne, Y., Motte, L., Russier, V., Ngo, A.T., Bonville, P., Pileni, M.P., J. Phys. Chem. B 108, 1848 (2004).Google Scholar
Ge, J., Hu, Y., Yin, Y., Angew. Chem. Int. Ed. 46, 7428 (2007).CrossRefGoogle Scholar
Lin, J., Zhou, W., Kumbhar, A., Wiemann, J., Fang, J., Carpenter, E.E., O’Connor, C.J., J. Solid State Chem. 159, 26 (2001).CrossRefGoogle Scholar
Hilgendorff, M., Tesche, B., Giersig, M., Aust. J. Chem. 54, 497 (2001).Google Scholar
Pileni, M.-P., Adv. Funct. Mater. 11, 323 (2001).3.0.CO;2-J>CrossRefGoogle Scholar
Sahoo, Y., Cheon, M., Wang, S., Luo, H., Furlani, E.P., Prasad, P.N., J. Phys. Chem. B 108, 3380 (2004).CrossRefGoogle Scholar
Park, J.I., Jun, Y.W., Choi, J.S., Cheon, J., Chem. Commun. 5001 (2007).Google Scholar
Fang, W.X., He, Z.-H., Xu, X.-Q., Mao, Z.-Q., Shen, H., Europhys. Lett. 77, 68004 (2007).CrossRefGoogle Scholar
Alphandéry, E., Ding, Y., Ngo, A.T., Wang, Z.L., Wu, L.F., Pileni, M.P., ACS Nano 3, 1539 (2009).CrossRefGoogle Scholar
Nakata, K., Hu, Y., Uzun, O., Bakr, O., Stellacci, F., Adv. Mater. 20, 4294 (2008).CrossRefGoogle Scholar
Fragouli, D., Buonsanti, R., Bertoni, G., Sangregorio, C., Innocenti, C., Falqui, A., Gatteschi, D., Cozzoli, P.D., Athanassiou, A., Cingolani, R., ACS Nano 4, 1873 (2010).Google Scholar
Roskov, K.E., Atkinson, J.E., Bronstein, L.M., Spontak, R.J., RSC Adv. 2, 4603 (2012).Google Scholar
Motornov, M., Malynych, S.Z., Pippalla, D.S., Zdyrko, B., Royter, H., Roiter, Y., Kahabka, M., Tokarev, A., Tokarev, I., Zhulina, E., Kornev, K.G., Luzinov, I., Minko, S., Nano Lett. 12, 3814 (2012).CrossRefGoogle Scholar
Ghosh, S., Puri, I.K., Soft Matter 9, 2024 (2013).CrossRefGoogle Scholar
Krommenhoek, P.J., Tracy, J.B., Part. Part. Syst. Char. 30, 759 (2013).Google Scholar
Erb, R.M., Libanori, R., Rothfuchs, N., Studart, A.R., Science 335, 199 (2012).CrossRefGoogle Scholar
Srivastava, S., Kotov, N.A., Soft Matter 5, 1146 (2009).Google Scholar
Tang, Z., Kotov, N.A., Adv. Mater. 17, 951 (2005).CrossRefGoogle Scholar
Raman, V., Bose, A., Olsen, B.D., Hatton, T.A., Macromolecules 45, 9373 (2012).CrossRefGoogle Scholar
Gopinadhan, M., Majewski, P.W., Beach, E.S., Osuji, C.O., ACS Macro Lett. 1, 184 (2011).Google Scholar
Ge, J., Hu, Y., Biasini, M., Beyermann, W.P., Yin, Y., Angew. Chem. Int. Ed. 46, 4342 (2007).Google Scholar
He, L., Wang, M., Ge, J., Yin, Y., Acc. Chem. Res. 45, 1431 (2012).Google Scholar
Bibette, J., J. Magn. Magn. Mater. 122, 37 (1993).CrossRefGoogle Scholar
Calderon, F.L., Stora, T., Mondain Monval, O., Poulin, P., Bibette, J., Phys. Rev. Lett. 72, 2959 (1994).Google Scholar
Xuan, R., Wu, Q., Yin, Y., Ge, J., J. Mater. Chem. 21, 3672 (2011).CrossRefGoogle Scholar
Kim, J., Chung, S.E., Choi, S.-E., Lee, H., Kim, J., Kwon, S., Nat. Mater. 10, 747 (2011).Google Scholar
Kim, L.N., Kim, E.G., Kim, J., Choi, S.E., Park, W., Kwon, S., Bull. Korean Chem. Soc. 33, 3735 (2012).CrossRefGoogle Scholar
Keng, P.Y., Bull, M.M., Shim, I.-B., Nebesny, K.G., Armstrong, N.R., Sung, Y., Char, K., Pyun, J., Chem. Mater. 23, 1120 (2011).Google Scholar
Kim, B.Y., Shim, I.-B., Araci, Z.O., Saavedra, S.S., Monti, O.L.A., Armstrong, N.R., Sahoo, R., Srivastava, D.N., Pyun, J., J. Am. Chem. Soc. 132, 3234 (2010).CrossRefGoogle Scholar
Love, J.C., Urbach, A.R., Prentiss, M.G., Whitesides, G.M., J. Am. Chem. Soc. 125, 12696 (2003).Google Scholar
Vasquez, Y., Henkes, A.E., Bauer, J.C., Schaak, R.E., J. Solid State Chem. 181, 1509 (2008).Google Scholar
Yin, Y., Rioux, R.M., Erdonmez, C.K., Hughes, S., Somorjai, G.A., Alivisatos, A.P., Science 304, 711 (2004).Google Scholar
Saville, S.L., Woodward, R.C., House, M.J., Tokarev, A., Hammers, J., Qi, B., Shaw, J., Saunders, M., Varsani, R.R., St. Pierre, T.G., Mefford, O.T., Nanoscale 5, 2152 (2013).CrossRefGoogle Scholar
Lacharme, F., Vandevyver, C., Gijs, M.A.M., Anal. Chem. 80, 2905 (2008).Google Scholar
Gijs, M.A.M., Lacharme, F., Lehmann, U., Chem. Rev. 110, 1518 (2009).Google Scholar
Chang, C.-H., Tan, C.-W., Miao, J., Barbastathis, G., Nanotechnology 20, 495301 (2009).Google Scholar
Yellen, B.B., Friedman, G., Feinerman, A., J. Appl. Phys. 91, 8552 (2002).Google Scholar
Yellen, B.B., Friedman, G., Feinerman, A., J. Appl. Phys. 93, 7331 (2003).Google Scholar
Yellen, B.B., Friedman, G., J. Appl. Phys. 93, 8447 (2003).Google Scholar
Yellen, B.B., Friedman, G., Adv. Mater. 16, 111 (2004).Google Scholar
Yellen, B.B., Friedman, G., Langmuir 20, 2553 (2004).Google Scholar
Helseth, L.E., Fischer, Th.M., Johansen, T.H., J. Magn. Magn. Mater. 277, 245 (2004).Google Scholar
Gunnarsson, K., Roy, P.E., Felton, S., Pihl, J., Svedlindh, P., Berner, S., Lidbaum, H., Oscarsson, S., Adv. Mater. 17, 1730 (2005).CrossRefGoogle Scholar
Yellen, B.B., Hovorka, O., Friedman, G., Proc. Natl. Acad. Sci. U.S.A. 102, 8860 (2005).Google Scholar
Yellen, B.B., Erb, R.M., Halverson, D.S., Hovorka, O., Friedman, G., IEEE Trans. Magn. 42, 3548 (2006).Google Scholar
Erb, R.M., Son, H.S., Samanta, B., Rotello, V.M., Yellen, B.B., Nature 457, 999 (2009).Google Scholar
Erb, R.M., Krebs, M.D., Alsberg, E., Samanta, B., Rotello, V.M., Yellen, B.B., Phys. Rev. E 80, 051402 (2009).Google Scholar
Krebs, M.D., Erb, R.M., Yellen, B.B., Samanta, B., Bajaj, A., Rotello, V.M., Alsberg, E., Nano Lett. 9, 1812 (2009).Google Scholar
Khalil, K.S., Sagastegui, A., Li, Y., Tahir, M.A., Socolar, J.E.S., Wiley, B.J., Yellen, B.B., Nat. Commun. 3, 794 (2012).Google Scholar
Henderson, J.R., Crawford, T.M., J. Appl. Phys. 109, 07D329 (2011).CrossRefGoogle Scholar
Henderson, J., Shi, S., Cakmaktepe, S., Crawford, T.M., Nanotechnology 23, 185304 (2012).Google Scholar
Ye, L., Terry, B., Mefford, O.T., Rinaldi, C., Crawford, T.M., Opt. Express 21, 1066 (2013).Google Scholar
Bitter, F., Phys. Rev. 38, 1903 (1931).Google Scholar
Porthun, S., ten Berge, P., Lodder, J.C., J. Magn. Magn. Mater. 123, 199 (1993).CrossRefGoogle Scholar