Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-24T08:30:38.676Z Has data issue: false hasContentIssue false

Low-temperature solid-oxide fuel cells based on proton-conducting electrolytes

Published online by Cambridge University Press:  10 September 2014

Emiliana Fabbri
Affiliation:
Electrochemistry Laboratory, Paul Scherrer Institute, Switzerland; [email protected]
Anna Magrasó
Affiliation:
Catalan Institute of Nanoscience and Nanotechnology, Spain; and Department of Chemistry, University of Oslo SMN/FERMiO, Norway; [email protected]
Daniele Pergolesi
Affiliation:
Paul Scherrer Institute, Switzerland; [email protected]
Get access

Abstract

The need for reducing the operating temperature of solid-oxide fuel cells (SOFCs) imposed by cost reduction has pushed significant progress in fundamental understanding of the individual components, as well as materials innovation and device engineering. Proton-conducting oxides have emerged as potential alternative electrolyte materials to oxygen-ion conducting oxides for operation at low and intermediate temperatures. This article describes major recent developments in electrolytes, electrodes, and complete fuel cell performance for SOFCs based on proton-conducting electrolytes. Although the performance of such fuel cells is still relatively modest, significant improvements in the power density output have been made during the last couple of years, and this trend is expected to continue.

Type
Research Article
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Wachsman, E.D., Lee, K.T., Science 334, 935 (2011).Google Scholar
Brett, D.J.L., Atkinson, A., Brando, N.P., Skinner, S.J., Chem. Soc. Rev. 37, 1568 (2008).Google Scholar
Fabbri, E., Pergolesi, D., Traversa, E., Chem. Soc. Rev. 39, 4355 (2010).Google Scholar
Kreuer, K.D., Annu. Rev. Mater. Res. 33, 333 (2003).Google Scholar
Merinov, B., Goddard, W.A., J. Chem. Phys. 130 (2009).Google Scholar
Islam, M.S., Davies, R.A., Gales, J.D., Chem. Mater. 13, 2049 (2001).Google Scholar
Yamazaki, Y., Blanc, F., Okuyama, Y., Buannic, L., Lucio-Vega, J.C., Grey, C.P., Haile, S.M., Nat. Mater. 12, 647 (2013).CrossRefGoogle Scholar
Yamazaki, Y., Hernandez-Sanchez, R., Haile, S.M., Chem. Mater. 21, 2755 (2009).Google Scholar
Pergolesi, D., Fabbri, E., D’Epifanio, A., Di Bartolomeo, E., Tebano, A., Sanna, S., Licoccia, S., Balestrino, G., Traversa, E., Nat. Mater. 9, 846 (2010).CrossRefGoogle Scholar
Kim, Y.B., Gur, T.M., Jung, H.J., Kang, S., Sinclair, R., Prinz, F.B., Solid State Ionics 198, 39 (2011).Google Scholar
Haugsrud, R., Norby, T., Nat. Mater. 5, 193 (2006).Google Scholar
Fjeld, H., Toyoura, K., Haugsrud, R., Norby, T., Phys. Chem. Chem. Phys. 12, 10313 (2010).Google Scholar
Magraso, A., Fontaine, M.L., Bredesen, R., Haugsrud, R., Norby, T., Solid State Ionics 262, 382 (2014).Google Scholar
Magraso, A., Fontaine, M.L., Larring, Y., Bredesen, R., Syvertsen, G.E., Lein, H.L., Grande, T., Huse, M., Strandbakke, R., Haugsrud, R., Norby, T., Fuel Cells 11, 17 (2011).Google Scholar
Shimura, T., Fujimoto, S., Iwahara, H., Solid State Ionics 143, 117 (2001).Google Scholar
Haugsrud, R., Solid State Ionics 178, 555 (2007).Google Scholar
Magraso, A., Frontera, C., Marrero-Lopez, D., Nunez, P., Dalton Trans. 46, 10273 (2009).Google Scholar
Magraso, A., Polfus, J.M., Frontera, C., Canales-Vazquez, J., Kalland, L.E., Hervoches, C.H., Erdal, S., Hancke, R., Islam, M.S., Norby, T., Haugsrud, R., J. Mater. Chem. 22, 1762 (2012).Google Scholar
Magraso, A., Hervoches, C.H., Ahmed, I., Hull, S., Nordstrom, J., Skilbred, A.W.B., Haugsrud, R., J. Mater. Chem. A 1, 3774 (2013).Google Scholar
Fabbri, E., Pergolesi, D., Traversa, E., Sci. Technol. Adv. Mater. 11 (2010).Google Scholar
Fabbri, E., Markus, I., Bi, L., Pergolesi, D., Traversa, E., Solid State Ionics 202, 30 (2011).Google Scholar
Magraso, A., Frontera, C., Gunnaes, A.E., Tarancon, A., Marrero-Lopez, D., Norby, T., Haugsrud, R., J. Power Sources 196, 9141 (2011).Google Scholar
Magraso, A., Kjolseth, C., Haugsrud, R., Norby, T., Int. J. Hydrogen Energy 37, 7962 (2012).Google Scholar
Shang, M., Tong, J.H., O’Hayre, R., RSC Adv. 3, 15769 (2013).Google Scholar
Rao, Y.Y., Zhong, S.H., He, F., Wang, Z.B., Peng, R.R., Lu, Y.L., Int. J. Hydrogen Energy 37, 12522 (2012).Google Scholar
Zhang, C.J., Zhao, H.L., Electrochem. Commun. 13, 1070 (2011).CrossRefGoogle Scholar
Grimaud, A., Mauvy, F., Bassat, J.M., Fourcade, S., Marrony, M., Grenier, J.C., J. Mater. Chem. 22, 16017 (2012).Google Scholar
Grimaud, A., Mauvy, F., Bassat, J.M., Fourcade, S., Rocheron, L., Marrony, M., Grenier, J.C., J. Electrochem. Soc. 159, B683 (2012).Google Scholar
Fabbri, E., Bi, L., Pergolesi, D., Traversa, E., Energy Environ. Sci. 4, 4984 (2011).CrossRefGoogle Scholar
Ricote, S., Bonanos, N., Lenrick, F., Wallenberg, R., J. Power Sources 218, 313 (2012).Google Scholar
Solis, C., Vert, V.B., Balaguer, M., Escolastico, S., Roitsch, S., Serra, J.M., ChemSusChem 5, 2155 (2012).Google Scholar
Fabbri, E., Bi, L., Pergolesi, D., Traversa, E., Adv. Mater. 24, 195 (2012).Google Scholar
Fabbri, E., Bi, L., Tanaka, H., Pergolesi, D., Traversa, E., Adv. Funct. Mater. 21, 158 (2011).Google Scholar
Fabbri, E., Bi, L., Rupp, J.L.M., Pergolesi, D., Traversa, E., RSC Adv. 1, 1183 (2011).Google Scholar
Sun, W.P., Liu, M.F., Liu, W., Adv. Energy Mater. 3, 1041 (2013).Google Scholar
Sun, W.P., Zhu, Z.W., Shi, Z., Liu, W., J. Power Sources 229, 95 (2013).Google Scholar
Bi, L., Fabbri, E., Sun, Z.Q., Traversa, E., Solid State Ionics 196, 59 (2011).Google Scholar
Sun, Z.Q., Fabbri, E., Bi, L., Traversa, E., J. Am. Ceram. Soc. 95, 627 (2012).Google Scholar
Babilo, P., Haile, S.M., J. Am. Ceram. Soc. 88, 2362 (2005).Google Scholar
Tong, J., Clark, D., Hoban, M., O’Hayre, R., Solid State Ionics 181, 496 (2010).Google Scholar
Bi, L., Fabbri, E., Sun, Z.Q., Traversa, E., Energy Environ. Sci. 4, 409 (2011).CrossRefGoogle Scholar
Bi, L., Fabbri, E., Traversa, E., Electrochem. Commun. 16, 37 (2012).Google Scholar
Slodczyk, A., Sharp, M.D., Upasen, S., Colomban, P-, Kilner, J.A., Solid State Ionics, January 2014, http://doi.org/10.1016/j.ssi.2013.12.044.Google Scholar
Balaguer, M., Solis, C., Bozza, F., Bonanos, N., Serra, J.M., J. Mater. Chem. A 1, 3004 (2013).Google Scholar
Quarez, E., Oumellal, Y., Joubert, O., Fuel Cells 13, 34 (2013).Google Scholar
Kim, Y.B., Gur, T.M., Kang, S., Jung, H.J., Sinclair, R., Prinz, F.B., Electrochem. Commun. 13, 403 (2011).CrossRefGoogle Scholar