Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-24T13:58:34.734Z Has data issue: false hasContentIssue false

Linear and nonlinear optical properties of modified graphene-based materials

Published online by Cambridge University Press:  23 November 2012

Li Cao
Affiliation:
Department of Chemistry, Clemson University; [email protected]
Sushant Sahu
Affiliation:
Department of Chemistry, Clemson University; [email protected]
Parambath Anilkumar
Affiliation:
Department of Chemistry, Clemson University; [email protected]
Chang Yi Kong
Affiliation:
Department of Chemistry, Clemson University; [email protected]
Ya-Ping Sun
Affiliation:
Department of Chemistry, Clemson University; [email protected]
Get access

Abstract

The optical properties of graphene-based nanomaterials have attracted much recent attention. This article provides an overview of recent advances in the study of linear and nonlinear optical transitions associated mostly with tailored energy bandgaps. In particular, the optical absorption characteristics and photoluminescence emissions due to various induced bandgaps and, in some cases, the formation of graphene quantum dots are highlighted. Nonlinear optical properties of these materials are reviewed with an emphasis on optical limiting through both nonlinear absorption and scattering mechanisms.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Li, D., Kaner, R.B., Science 320, 1170 (2008).CrossRefGoogle ScholarPubMed
Castro Neto, A.H., Guinea, F., Peres, N.M.R., Novoselov, K.S., Geim, A.K., Rev. Mod. Phys. 81, 109 (2009).CrossRefGoogle Scholar
Huang, X., Yin, Z.Y., Wu, S.X., Qi, X.Y., He, Q.Y., Zhang, Q.C., Yan, Q.Y., Boey, F., Zhang, H., Small 7, 1876 (2011).CrossRefGoogle ScholarPubMed
Singh, V., Joung, D., Zhai, L., Das, S., Khondaker, S.I., Seal, S., Prog. Mater. Sci. 56, 1178 (2011).CrossRefGoogle Scholar
Huang, X., Qi, X.Y., Boey, F., Zhang, H., Chem. Soc. Rev. 41, 666 (2012).CrossRefGoogle Scholar
Biró, L.P., Nemes-Incze, P., Lambin, P., Nanoscale 4, 1824 (2012).CrossRefGoogle ScholarPubMed
Luo, B., Liu, S.M., Zhi, L.J., Small 8, 630 (2012).CrossRefGoogle Scholar
Nair, R.R., Blake, P., Grigorenko, A.N., Novoselov, K.S., Booth, T.J., Stauber, T., Peres, N.M.R., Geim, A.K., Science 320, 1308 (2008).CrossRefGoogle Scholar
Loh, K.P., Bao, Q.L., Eda, G., Chhowalla, M., Nat. Chem. 2, 1015 (2010).CrossRefGoogle Scholar
Bonaccorso, F., Sun, Z., Hasan, T., Ferrari, A.C., Nat. Photonics 4, 611 (2010).CrossRefGoogle Scholar
Johari, P., Shenoy, V.B., ACS Nano 5, 7640 (2011).CrossRefGoogle Scholar
Galande, C., Mohite, A.D., Naumov, A.V., Gao, W., Ci, L.J., Ajayan, A., Gao, H., Srivastava, A., Weisman, R.B., Ajayan, P.M., Sci. Rep. 1, 85 (2011).CrossRefGoogle Scholar
Gupta, V., Chaudhary, N., Srivastava, R., Sharma, G.D., Bhardwaj, R., Chand, S., J. Am. Chem. Soc. 133, 9960 (2011).CrossRefGoogle Scholar
Wan, X.J., Huang, Y., Chen, Y.S., Acc. Chem. Res. 45, 598 (2012).CrossRefGoogle Scholar
Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A., Science 306, 666 (2004).CrossRefGoogle Scholar
Hernandez, Y., Nicolosi, V., Lotya, M., Blighe, F.M., Sun, Z.Y., De, S., McGovern, I.T., Holland, B., Byrne, M., Gun’ko, Y.K., Boland, J.J., Niraj, P., Duesberg, G., Krishnamurthy, S., Goodhue, R., Hutchison, J., Scardaci, V., Ferrari, A.C., Coleman, J.N., Nat. Nanotechnol. 3, 563 (2008).CrossRefGoogle Scholar
Li, D., Muller, M.B., Gilje, S., Kaner, R.B., Wallace, G.G., Nat. Nanotechnol. 3, 101 (2008).CrossRefGoogle Scholar
Obraztsov, A.N., Nat. Nanotechnol. 4, 212 (2009).CrossRefGoogle Scholar
Mattevi, C., Kima, H., Chhowall, M., J. Mater. Chem. 21, 3324 (2011).CrossRefGoogle Scholar
Yan, J.-A., Xian, L.D., Chou, M.Y., Phys. Rev. Lett. 103, 086802 (2009).CrossRefGoogle Scholar
Balog, R., Jorgensen, B., Nilsson, L., Andersen, M., Rienks, E., Bianchi, M., Fanetti, M., Laegsgaard, E., Baraldi, A., Lizzit, S., Sljivancanin, Z., Besenbacher, F., Hammer, B., Pedersen, T.G., Hofmann, P., Hornekaer, L., Nat. Mater. 9, 315 (2010).CrossRefGoogle Scholar
Eda, G., Lin, Y.-Y., Mattevi, C., Yamaguchi, H., Chen, H.-A., Chen, I.-S., Chen, C.-W., Chhowalla, M., Adv. Mater. 22, 505 (2010).CrossRefGoogle Scholar
Nourbakhsh, A., Cantoro, M., Vosch, T., Pourtois, G., Clemente, F., van der Veen, M.H., Hofkens, J., Heyns, M.M., De Gendt, S., Sels, B.F., Nanotechnology 21, 435203 (2010).CrossRefGoogle Scholar
Luo, Z., Vora, P.M., Mele, E.J., Johnson, A.T., Kikkawa, J.M., Appl. Phys. Lett. 94, 111909 (2009).CrossRefGoogle Scholar
Krishnamoorthy, K., Veerapandian, M., Mohan, R., Kim, S.J., Appl. Phys. A 106, 501 (2012).CrossRefGoogle Scholar
Shukla, S., Saxena, S., Appl. Phys. Lett. 98, 073104 (2011).CrossRefGoogle Scholar
Vogt, A.P., Gibson, C.T., Tune, D.D., Bissett, M.A., Voelcker, N.H., Shapter, J.G., Ellis, A.V., Nanoscale 3, 3076 (2011).CrossRefGoogle Scholar
Pan, D.Y., Guo, L., Zhang, J.C., Xi, C., Xue, Q., Huang, H., Li, J.H., Zhang, Z.W., Yu, W.J., Chen, Z.W., Li, Z., Wu, M.H., J. Mater. Chem. 22, 3314 (2012).CrossRefGoogle Scholar
Pan, D.Y., Zhang, J.C., Li, Z., Wu, M.H., Adv. Mater. 22, 734 (2010).CrossRefGoogle Scholar
Lu, J., Yang, J.-X., Wang, J.Z., Lim, A.L., Wang, S., Loh, K.P., ACS Nano 3, 2367 (2009).CrossRefGoogle Scholar
Li, X.L., Wang, X.R., Zhang, L., Lee, S., Dai, H.J., Science 319, 1229 (2008).CrossRefGoogle Scholar
Bao, Q.L., Zhang, H., Wang, Y., Ni, Z.H., Yan, Y.L., Shen, Z.X., Loh, K.P., Tang, D.Y., Adv. Funct. Mater. 19, 3077 (2009).CrossRefGoogle Scholar
Bao, Q.L., Zhang, H., Yang, J.X., Wang, S., Tong, D.Y., Jose, R., Ramakrishna, S., Lim, C.T., Loh, K.P., Adv. Funct. Mater. 20, 782 (2010).CrossRefGoogle Scholar
Liu, W.-T., Wu, S.W., Schuck, P.J., Salmeron, M., Shen, Y.R., Wang, F., Phys. Rev. B 82, 081408(R) (2010).CrossRefGoogle Scholar
Lim, G.K., Chen, Z.L., Clark, J., Goh, R.G.S., Ng, W.H., Tan, H.W., Friend, R.H., Ho, P.K.H., Chua, L.L., Nat. Photonics 5, 554 (2011).CrossRefGoogle Scholar
Liu, Z.B., Zhao, X., Zhang, X.L., Yan, X.Q., Wu, Y.P., Chen, Y.S., Tian, J.G., J. Phys. Chem. Lett. 2, 1972 (2011).CrossRefGoogle Scholar
Sun, Y.-P., Riggs, J.E., Int. Rev. Phys. Chem. 18, 43 (1999).CrossRefGoogle Scholar
Bass, M., Li, G., Van Stryland, E.W., Eds., Handbook of Optics IV (McGraw-Hill, New York, ed. 2, 2001).Google Scholar
Wang, J., Hernandez, Y., Lotya, M., Coleman, J.N., Blau, W.J., Adv. Mater. 21, 2430 (2009).CrossRefGoogle Scholar
Niyogi, S., Bekyarova, E., Itkis, M.E., McWilliams, J.L., Hamon, M.A., Haddon, R.C., J. Am. Chem. Soc. 128, 7720, (2006).CrossRefGoogle Scholar
Acik, M., Lee, G., Mattevi, C., Chhowalla, M., Choi, K., Chaball, Y.J., Nat. Mater. 9, 840 (2010).CrossRefGoogle Scholar
Robinson, J.T., Tabakman, S.M., Liang, Y.Y., Wang, H.L., Casalongue, H.S., Vinh, D., Dai, H.J., J. Am. Chem. Soc. 133, 6825 (2011).CrossRefGoogle Scholar
Itkis, M.E., Perea, D.E., Jung, R., Niyogi, S., Haddon, R.C., J. Am. Chem. Soc. 127, 3439 (2005).CrossRefGoogle Scholar
Landi, B.J., Ruf, H.J., Evans, C.M., Cress, C.D., Raffaelle, R.P., J. Phys. Chem. B 109, 9952 (2005).CrossRefGoogle Scholar
Ohmori, S., Saito, T., Tange, M., Shukla, B., Okazaki, T., Yumura, M., Iijima, S., J. Phys. Chem. C 114, 10077 (2010).CrossRefGoogle Scholar
Dasgupta, D., Demichelis, F., Pirri, C.F., Tagliaferro, A., Phys. Rev. B 43, 2131 (1991).CrossRefGoogle Scholar
Xu, J., Sahu, S., Cao, L., Anilkumar, P., Tackett, K.N. II, Qian, H.J., Bunker, C.E., Guliants, E.A., . Parenzan, A., Sun, Y.-P., ChemPhysChem 12, 3604 (2011).CrossRefGoogle Scholar
Ohta, T., Bostwick, A., Seyller, T., Horn, K., Rotenberg, E., Science 313, 951 (2006).CrossRefGoogle Scholar
Eberlein, T., Bangert, U., Nair, R.R., Jones, R., Gass, M., Bleloch, A.L., Novoselov, K.S., Geim, A., Briddon, P.R., Phys. Rev. B 77, 233406 (2008).CrossRefGoogle Scholar
Cai, W., Piner, R.D., Stadermann, F.J., Park, S., Shaibat, M.A., Ishii, Y., Yang, D., Velamakanni, A., An, S.J., Stoller, M., An, J., Chen, D., Ruoff, R.S., Science 321, 1815 (2008).CrossRefGoogle Scholar
Hummers, W.S., Offeman, R.E., J. Am. Chem. Soc. 80, 1339 (1958).CrossRefGoogle Scholar
Kong, C.Y., Song, W.-L., Meziani, M.J., Tackett, K.N. II, Cao, L., Farr, A.J., Anderson, A., Sun, Y.-P., J. Supercrit. Fluids 61, 206 (2011).CrossRefGoogle Scholar
Mkhoyan, K.A., Contryman, A.W., Silcox, J., Stewart, D.A., Eda, G., Mattevi, C., Miller, S., Chhowalla, M., Nano Lett. 9, 1058 (2009).CrossRefGoogle Scholar
Peng, J., Gao, W., Gupta, B.K., Liu, Z.., Romero-Aburto, R., Ge, L.H., Song, L., Alemany, L.B., Zhan, X.B., Gao, G.H., Vithayathil, S.A., Kaipparettu, B.A., Marti, A.A., Hayashi, T., Zhu, J.-J., Ajayan, P.M., Nano Lett. 12, 844 (2012).CrossRefGoogle Scholar
Liu, Z.B., Wang, Y., Zhang, X.L., Xu, Y.F., Chen, Y.S., Tian, J.G., Appl. Phys. Lett. 94, 021902 (2009).CrossRefGoogle Scholar
Radovic, L.R., Bockrath, B., J. Am. Chem. Soc. 127, 5917 (2005).CrossRefGoogle Scholar
Stohr, R.J., Kolesov, R., Pflaum, J., Wrachtrup, J., Phys. Rev. B 82, 121408 (2010).CrossRefGoogle Scholar
Rana, F., Strait, J.H., Wang, H.N., Manolatou, C., Phys. Rev. B 84, 045437 (2011).CrossRefGoogle Scholar
Li, J.-L., Bao, H.-C., Hou, X.L., Sun, L., Wang, X.-C., Gu, M., Angew. Chem., Int. Ed. 51, 1830 (2012).CrossRefGoogle Scholar
Lu, J., Yeo, P.S. E., Gan, C.K., Wu, P., Loh, K.P., Nat. Nanotechnol. 6, 247 (2011).CrossRefGoogle Scholar
Nair, R.R., Ren, W.C., Jalil, R., Riaz, I., Kravets, V.G., Britnell, L., Blake, P., Schedin, F., Mayorov, A.S., Yuan, S.J., Katsnelson, M.I., Cheng, H.M., Strupinski, W., Bulusheva, L.G., Okotrub, A.V., Grigorieva, I.V., Grigorenko, A.N., Novoselov, K.S., Geim, A.K., Small 6, 2877 (2010).CrossRefGoogle Scholar
Chang, H.X., Cheng, J.S., Liu, X.Q., Gao, J.F., Li, M.J., Li, J.H., Tao, X.M., Ding, F., Zheng, Z.J., Chem. Eur. J. 17, 8896 (2011).CrossRefGoogle Scholar
Jeon, K.J., Lee, Z., Pollak, E., Moreschini, L., Bostwick, A., Park, C.M., Mendelsberg, R., Radmilovic, V., Kostecki, R., Richardson, T.J., Rotenberg, E., ACS Nano 5, 1042 (2011).CrossRefGoogle Scholar
Shen, J., Zhu, Y., Chen, C., Yang, X., Li, C.Z., Chem. Commun. 47, 2580 (2011).CrossRefGoogle Scholar
Zhu, S.J., Zhang, J.H., Liu, X., Li, B., Wang, X.F., Tang, S.J., Meng, Q.N., Li, Y.F., Shi, C., Hu, R., Yang, B., RSC Adv. 2, 2717 (2012).CrossRefGoogle Scholar
Qian, J., Wang, D., Peng, L., Xi, W., Cai, F.-H., Zhu, Z.-F.., He, H., Hu, M.-L., He, S., Angew. Chem., Int. Ed., published online 24 September 2012, http://dx.doi.org/10.1002/anie.201206107.Google Scholar
Zhuo, S., Shao, M.W., Lee, S.-T., ACS Nano 6, 1059 (2012).CrossRefGoogle Scholar
Lui, C.H., Mak, K.F., Shan, J., Heinz, T.F., Phys. Rev. Lett. 105, 127404 (2010).CrossRefGoogle Scholar
Tutt, L.W., Boggess, T.F., Prog. Quantum Electron. 17, 299 (1993).CrossRefGoogle Scholar
Sun, Y.-P., Riggs, J.E., Henbest, K.B., Martin, R.B., J. Nonlinear Opt. Phys. Mater. 9, 481 (2000).CrossRefGoogle Scholar
Wang, J., Blau, W.J., J. Opt. A: Pure Appl. Opt. 11, 024001 (2009).CrossRefGoogle Scholar
Riggs, J.E., Walker, D.B., Carroll, D.L., Sun, Y.-P., J. Phys. Chem. B 104, 7071 (2000).CrossRefGoogle Scholar
Sun, Y.-P., Riggs, J.E., Liu, B., Chem. Mater. 9, 1268 (1997).CrossRefGoogle Scholar
Sun, Y.-P., Lawson, G.E., Riggs, J.E., Ma, B., Wang, N., Moton, D.K., J. Phys. Chem. A 102, 5520 (1998).CrossRefGoogle Scholar
Riggs, J.E., Sun, Y.-P., J. Chem. Phys. 112, 4221 (2000).CrossRefGoogle Scholar
Mansour, K., Soileau, M.J., Van Stryland, E.W., J. Opt. Soc. Am. B 2, 1100 (1992).CrossRefGoogle Scholar
Nashold, K.M., Walter, D.P., J. Opt. Soc. Am. B 12, 1228 (1995).CrossRefGoogle Scholar
Vincent, D., Petit, S., Chin, S.L., Appl. Opt. 41, 2944 (2002).CrossRefGoogle Scholar
Zhao, B.S., Cao, B.B., Zhou, W.L., Li, D., Zhao, W., J. Phys. Chem. C 114, 12517 (2010).CrossRefGoogle Scholar
Feng, M., Zhan, H.B., Chen, Y., Appl. Phys. Lett. 96, 033107 (2010).CrossRefGoogle Scholar
Krishna, M.B.M., Kumar, V.P., Venkatramaiah, N., Venkatesan, R., Rao, D.N., Appl. Phys. Lett. 98, 081106 (2011).CrossRefGoogle Scholar
Krishna, M.B.M., Venkatramaiah, N., Venkatesan, R., Rao, D.N., J. Mater. Chem. 22, 3059 (2012).CrossRefGoogle Scholar
Xu, Y.F., Liu, Z.B., Zhang, X.L., Wang, Y., Tian, J.G., Huang, Y., Ma, Y.F., Zhang, X.Y., Chen, Y.S., Adv. Mater. 21, 1275 (2009).CrossRefGoogle Scholar
Liu, Z.B., Xu, Y.F., Zhang, X.Y., Zhang, X.L., Chen, Y.S., Tian, J.G., J. Phys. Chem. B 113, 9681 (2009).CrossRefGoogle Scholar
Feng, M., Sun, R.Q., Zhan, H.B., Chen, Y., Nanotechnology 21, 075601 (2010).CrossRefGoogle Scholar
Zhang, X.L., Zhao, X., Liu, Z.B., Shi, S., Zhou, W.Y., Tian, J.G., Xu, Y.F., Chen, Y.S., J. Opt. 13, 075202 (2011).CrossRefGoogle Scholar
Nalla, V., Polavarapu, L., Manga, K.K., Goh, B.M., Loh, K.P., Xu, Q.-H., Ji, W., Nanotechnology 21, 415203 (2010).CrossRefGoogle Scholar
Wu, R.., Zhang, Y.L., Yan, S.C., Bian, F., Wang, W.L., Bai, X.D., Lu, X.H., Zhao, J.M., Wang, E.G., Nano Lett. 11, 5159 (2011).CrossRefGoogle Scholar
Hendry, E., Hale, P.J., Moger, J., Savchenko, A.K., Mikhailov, S.A., Phys. Rev. Lett. 105, 097401 (2010).CrossRefGoogle Scholar
Dean, J.J., van Driel, H.M., Appl. Phys. Lett. 95, 261910 (2009).CrossRefGoogle Scholar
Dean, J.J., van Driel, H.M., Phys. Rev. B 82, 125411 (2010).CrossRefGoogle Scholar
Glazov, M.M., JETP Lett. 93, 366 (2011).CrossRefGoogle Scholar