Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-24T03:22:24.476Z Has data issue: false hasContentIssue false

Lanthanide-based nanostructures for optical bioimaging: Small particles with large promise

Published online by Cambridge University Press:  13 November 2014

Eva Hemmer
Affiliation:
Institut National de la Recherche Scientifique, Centre Énergie Matériaux Télécommunication, Université du Québec, Canada; [email protected]
Fiorenzo Vetrone
Affiliation:
Institut National de la Recherche Scientifique, Centre Énergie Matériaux Télécommunication, Université du Québec, Canada; [email protected]
Kohei Soga
Affiliation:
Department of Materials Science and Technology, Tokyo University of Science, Japan; [email protected]
Get access

Abstract

Fast and significant progress has been achieved in the development of new biomarkers in recent years providing promising approaches for the reliable detection of diseases at an early stage. Yet, the disadvantages of commonly used markers, including photobleaching, autofluorescence, phototoxicity, and scattering, when ultraviolet or visible light is used for excitation, need to be overcome. Lanthanide-doped host materials are well known for their excellent optical properties, such as their ability to (up)convert near-infrared excitation to higher energies spanning the ultraviolet, visible, and near-infrared regions or to undergo strong near-infrared luminescence following near-infrared excitation. Their application as biomarkers may overcome the aforementioned drawbacks of conventional dyes. Thus, lanthanide-based nanostructures are highly promising candidates for cellular and small animal imaging, while the assessment of their cytotoxicity remains a crucial issue. Recent developments in the field of upconversion and near-infrared bioimaging focusing on some of the latest results obtained in in vitro and in vivo studies assessing the toxicity of lanthanide-based nanophosphors are highlighted in this review.

Type
Research Article
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, R.R., Parrish, J.A., J. Invest. Dermatol. 77, 13 (1981).Google Scholar
Smith, A.M., Mancini, M.C., Nie, S., Nat. Nanotechnol. 4, 710 (2009).Google Scholar
Hemmer, E., Venkatachalam, N., Hyodo, H., Hattori, A., Ebina, Y., Kishimoto, H., Soga, K., Nanoscale 5, 11339 (2013).Google Scholar
Troyan, S.L., Kianzad, V., Gibbs-Strauss, S.L., Gioux, S., Matsui, A., Oketokoun, R., Ngo, L., Khamene, A., Azar, F., Frangioni, J.V., Ann. Surg. Oncol. 16, 2943 (2009).Google Scholar
Yao, C., Tong, Y., Trends Analyt. Chem. 39, 60 (2012).Google Scholar
Blasse, G., Grabmaier, B.C., Luminescent Materials (Springer Verlag, Berlin, 1994).Google Scholar
Soga, K., in Application of Ceramic Nanophosphors for Biomedical Photonics, Tan, M.C., Ed. (Transworld Research Network, Kerala, India, 2009), p. 223.Google Scholar
Vetrone, F., Capobianco, J.A., Int. J. Nanotechnol. 5, 1306 (2008).Google Scholar
Hemmer, E., Takeshita, H., Yamano, T., Fujiki, T., Kohl, Y., Löw, K., Venkatachalam, N., Hyodo, H., Kishimoto, H., Soga, K., J. Mater. Sci. Mater. Med. 23, 2399 (2012).Google Scholar
Mao, Y., Tran, T., Guo, X., Huang, J.Y., Shih, C.K., Wang, K.L., Chang, J.P., Adv. Funct. Mater. 19, 748 (2009).Google Scholar
Konishi, T., Shimizu, M., Kameyama, Y., Soga, K., J. Mater. Sci. Mater. Electron. 18 (S1), 183 (2007).Google Scholar
Sotiriou, G.A., Schneider, M., Pratsinis, S.E., J. Phys. Chem. C 115, 1084 (2011).Google Scholar
Kamimura, M., Kanayama, N., Tokuzen, K., Soga, K., Nagasaki, Y., Nanoscale 3, 3705 (2011).Google Scholar
Venkatachalam, N., Hemmer, E., Yamano, T., Hyodo, H., Kishimoto, H., Soga, K., Prog. Cryst. Growth Charact. Mater. 58, 121 (2012).Google Scholar
Atabaev, T.Sh., Jin, O.S., Lee, J.H., Han, D.-W., Vu, H.H.T., Hwang, Y.-H., Kim, H.-K., RSC Adv. 2, 9495 (2012).Google Scholar
Sotiriou, G.A., Franco, D., Poulikakos, D., Ferrari, A., ACS Nano 6, 3888 (2012).Google Scholar
Soga, K., Tokuzen, K., Tsuji, K., Yamano, T., Hyodo, H., Kishimoto, H., Eur. J. Inorg. Chem. 18, 2673 (2010).Google Scholar
Venkatachalam, N., Yamano, T., Hemmer, E., Hyodo, H., Kishimoto, H., Soga, K., J. Am. Ceram. Soc. 96, 2759 (2013).Google Scholar
Lim, S.F., Riehn, R., Tung, C., Ryu, W.S., Zhuo, R., Dalland, J., Austin, R.H., Nanotechnology 20, 405701 (2009).Google Scholar
Setua, S., Menon, D., Asok, A., Nair, S., Koyakutty, M., Biomaterials 31, 714 (2010).Google Scholar
Luo, N., Tian, X., Yang, C., Xiao, J., Hu, W., Chen, D., Li, L., Phys. Chem. Chem. Phys. 15, 12235 (2013).Google Scholar
Azizian, G., Riyahi-Alam, N., Haghgoo, S., Saffari, M., Zohdiaghdam, R., Gorj, E., Mater. Sci. Poland 31, 158 (2013).Google Scholar
Zhou, L., Gu, Z., Liu, X., Yin, W., Tian, G., Yan, L., Jin, S., Ren, W., Xing, G., Li, W., Chang, X., Hu, Z., Zhao, Y., J. Mater. Chem. 22, 966 (2012).Google Scholar
Ahrén, M., Selegard, L., Klasson, A., Söderlind, F., Abrikossova, N., Skoglund, C., Bengtsson, T., Engström, M., Käll, P.-O., Uvdal, K., Langmuir 26, 5753 (2010).Google Scholar
Liu, Z., Liu, X., Yuan, Q., Dong, K., Jiang, L., Li, Z., Ren, J., Qu, X., J. Mater. Chem. 22, 14982 (2012).Google Scholar
Hemmer, E., Venkatachalam, N., Hyodo, H., Soga, K., Adv. Mater. Sci. Eng. 2012, 748098 (2012).Google Scholar
Hemmer, E., Yamano, T., Kishimoto, H., Venkatachalam, N., Hyodo, H., Soga, K., Acta Biomater. 9, 4734 (2013).Google Scholar
Kattel, K., Park, J.Y., Xu, W., Kim, H.G., Lee, E.J., Bony, B.A., Heo, W.C., Jin, S., Baeck, J.S., Chang, Y., Kim, T.J., Bae, J.E., Chae, K.S., Lee, G.H., Biomaterials 33, 3254 (2012).Google Scholar
Lee, S., Kasuga, T., Kato, K., J. Ceram. Soc. Jpn. 118, 428 (2010).Google Scholar
Heng, B.C., Das, G.K., Zhao, X., Ma, L.-L., Tan, T.T.-Y., Ng, K.W., Loo, J.S.-C., Biointerphases 5, FA88 (2010).Google Scholar
Nichkova, M., Dosev, D., Gee, S.J., Hammock, B.D., Kennedy, I.M., Anal. Chem. 77, 6864 (2005).Google Scholar
Petoral, R.M. Jr., Söderlind, F., Klasson, A., Suska, A., Fortin, M.A., Abrikossova, N., Selegård, L., Käll, P.-O., Engström, M., Uvda, K., J. Phys. Chem. C 113, 6913 (2009).Google Scholar
Das, G.K., Tan, T.T.Y., J. Phys. Chem. C 112, 11211 (2008).Google Scholar
Schubert, D., Dargusch, R., Raitano, J., Chan, S.-W., Biochem. Biophys. Res. Commun. 342, 86 (2006).Google Scholar
Kattel, K., Park, J.Y., Xu, W., Kim, H.G., Lee, E.J., Bony, B.A., Heo, W.C., Chang, Y., Kim, T.J., Do, J.Y., Chae, K.S., Kwak, Y.W., Lee, G.H., Colloids Surf. A 394, 85 (2012).Google Scholar
Chen, G., Ohulchanskyy, T.Y., Kumar, R., Agren, H., Prasad, P.N., ACS Nano 4, 3163 (2010).Google Scholar
Vetrone, F., Naccache, R., de la Fuente, A.J., Sanz-Rodrıíguez, F., Blazquez-Castro, A., Martin Rodriguez, E., Jaque, D., García Solé, J., Capobianco, J.A., Nanoscale 2, 495 (2010).Google Scholar
Cao, T., Yang, T., Gao, Y., Yang, Y., Hu, H., Li, F., Inorg. Chem. Commun. 13, 392 (2010).Google Scholar
Xiong, L.-Q., Chen, Z.-G., Yu, M.-X., Li, F.-Y., Liu, C., Huang, C.-H., Biomaterials 30, 5592 (2009).Google Scholar
Xiong, L., Yang, T., Yang, Y., Xu, C., Li, F., Biomaterials 31, 7078 (2010).Google Scholar
Zhou, J., Sun, Y., Du, X., Xiong, L., Hua, H., Li, F., Biomaterials 31, 3287 (2010).Google Scholar
Xia, A., Chen, M., Gao, Y., Wu, D., Feng, W., Li, F., Biomaterials 33, 5394 (2012).Google Scholar