Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-24T03:37:03.606Z Has data issue: false hasContentIssue false

Interplay of structure and mechanics in silk/carbon nanocomposites

Published online by Cambridge University Press:  10 January 2019

Jing Ren
Affiliation:
School of Physical Science and Technology, ShanghaiTech University, China; [email protected]
Yawen Liu
Affiliation:
School of Physical Science and Technology, ShanghaiTech University, China; [email protected]
David L. Kaplan
Affiliation:
Department of Biomedical Engineering, Tufts University, USA; [email protected]
Shengjie Ling
Affiliation:
School of Physical Science and Technology, ShanghaiTech University, China; [email protected]
Get access

Abstract

Silk and carbon nanomaterials, such as graphene oxide, graphene, and carbon nanotubes, have complementary mechanical properties that feature superior toughness and strength, respectively. Different strategies have been devoted to developing silk/carbon nanocomposites, but challenges remain to fully integrate the mechanical advantages of these two components into one synergistic material system. In this article, we provide a critical summary of structure–mechanics relationships in silk/carbon nanocomposites and highlight the impact of the interaction between silk and carbon nanomaterials on mechanical properties of the hybrid materials. We describe the challenges involved and directions for future designs of silk/carbon nanocomposites.

Type
Mechanical Behavior of Nanocomposites
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ling, S., Kaplan, D.L., Buehler, M.J., Nat. Rev. Mater. 3, 18016 (2018).CrossRefGoogle Scholar
Ling, S., Chen, W., Fan, Y., Zheng, K., Jin, K., Yu, H., Buehler, M.J., Kaplan, D.L., Prog. Polym. Sci. 85, 1 (2018).CrossRefGoogle Scholar
Yarger, J.L., Cherry, B.R., van der Vaart, A., Nat. Rev. Mater. 3, 18008 (2018).CrossRefGoogle Scholar
Lee, C., Wei, X., Kysar, J.W., Hone, J., Science 321, 385 (2008).CrossRefGoogle Scholar
Kenry, , Yeo, J.C., Lim, C.T., Microsyst. Nanoeng. 2, 19 (2016).CrossRefGoogle Scholar
Barthelat, F., Yin, Z., Buehler, M.J., Nat. Rev. Mater. 1, 16007 (2016).CrossRefGoogle Scholar
Zhang, W., Ye, C., Zheng, K., Zhong, J., Tang, Y., Fan, Y., Buehler, M.J., Ling, S., Kaplan, D.L., ACS Nano 12, 6968 (2018).CrossRefGoogle Scholar
Ling, S., Jin, K., Qin, Z., Li, C., Zheng, K., Zhao, Y., Wang, Q., Kaplan, D.L., Buehler, M.J., Adv. Mater. 30, 1802306 (2018).CrossRefGoogle Scholar
Ling, S., Zhang, Q., Kaplan, D.L., Omenetto, F., Buehler, M.J., Qin, Z., Lab Chip 16, 2459 (2016).CrossRefGoogle Scholar
Sherman, V.R., Yang, W., Meyers, M.A., J. Mech. Behav. Biomed. Mater. 52, 22 (2015).CrossRefGoogle Scholar
Seo, J.-W., Kim, H., Kim, K., Choi, S.Q., Lee, H.J., Adv. Funct. Mater. 28, 1800802 (2018).CrossRefGoogle Scholar
Espinosa, H.D., Rim, J.E., Barthelat, F., Buehler, M.J., Prog. Mater. Sci. 54, 1059 (2009).CrossRefGoogle Scholar
Liu, Y., Dong, X., Chen, P., Chem. Soc. Rev. 41, 2283 (2012).CrossRefGoogle Scholar
Huang, L., Li, C., Yuan, W., Shi, G., Nanoscale 5, 3780 (2013).CrossRefGoogle Scholar
Zhang, C., Zhang, Y., Shao, H., Hu, X., ACS Appl. Mater. Interfaces 8, 3349 (2016).CrossRefGoogle ScholarPubMed
Wang, Y., Ma, R., Hu, K., Kim, S., Fang, G., Shao, Z., Tsukruk, V.V., ACS Appl. Mater. Interfaces 8, 24962 (2016).CrossRefGoogle ScholarPubMed
Ling, S., Qi, Z., Knight, D.P., Shao, Z., Chen, X., Biomacromolecules 12, 3344 (2011).CrossRefGoogle Scholar
Jin, H.J., Kaplan, D.L., Nature 424, 1057 (2003).CrossRefGoogle Scholar
Zheng, K., Ling, S., Biotechnol. J. 13, 1700753 (2018).CrossRefGoogle Scholar
Hu, K., Gupta, M.K., Kulkarni, D.D., Tsukruk, V.V., Adv. Mater. 25, 2301 (2013).CrossRefGoogle Scholar
Grant, A.M., Kim, H.S., Dupnock, T.L., Hu, K., Yingling, Y.G., Tsukruk, V.V., Adv. Funct. Mater. 26, 6380 (2016).CrossRefGoogle Scholar
Ling, S., Li, C., Adamcik, J., Wang, S., Shao, Z., Chen, X., Mezzenga, R., ACS Macro Lett. 3, 146 (2014).CrossRefGoogle Scholar
Fang, G., Zheng, Z., Yao, J., Chen, M., Tang, Y., Zhong, J., Qi, Z., Li, Z., Shao, Z., Chen, X., J. Mater. Chem. B 3, 3940 (2015).CrossRefGoogle Scholar
Zhou, H., Shao, Z., Chen, X., Chin. J. Polym. Sci. 32, 29 (2014).CrossRefGoogle Scholar
Ling, S., Qin, Z., Li, C., Huang, W., Kaplan, D.L., Buehler, M.J., Nat. Commun. 8, 1387 (2017).CrossRefGoogle Scholar
Ling, S., Wang, Q., Zhang, D., Zhang, Y., Mu, X., Kaplan, D.L., Buehler, M.J., Adv. Funct. Mater. 28, 1705291 (2018).CrossRefGoogle Scholar
Katz, A.K., Glusker, J.P., Beebe, S.A., Bock, C.W., J. Am. Chem. Soc. 118, 5752 (1996).CrossRefGoogle Scholar
Strynadka, N.C., James, M.N., Annu. Rev. Biochem. 58, 951 (1989).CrossRefGoogle Scholar
Ji, B., Gao, H., Annu. Rev. Mater. Res. 40, 77 (2010).CrossRefGoogle Scholar
Martin-Martinez, F.J., Jin, K., López Barreiro, D., Buehler, M.J., ACS Nano 12, 7425 (2018).CrossRefGoogle Scholar
Guo, J., Li, C., Ling, S., Huang, W., Chen, Y., Kaplan, D.L., Biomaterials 145, 44 (2017).CrossRefGoogle Scholar
Ling, S., Qin, Z., Huang, W., Cao, S., Kaplan, D.L., Buehler, M.J., Sci. Adv. 3, e1601939 (2017).CrossRefGoogle Scholar
Ling, S., Jin, K., Kaplan, D.L., Buehler, M.J., Nano Lett. 16, 3795 (2016).CrossRefGoogle Scholar
Nalvuran, H., Elçin, A.E., Elçin, Y.M., Int. J. Biol. Macromol. 114, 77 (2018).CrossRefGoogle Scholar
Aznar-Cervantes, S., Pagán, A., Martínez, J.G., Bernabeu-Esclapez, A., Otero, T.F., Meseguer-Olmo, L., Paredes, J.I., Cenis, J.L., Mater. Sci. Eng. C 79, 315 (2017).CrossRefGoogle Scholar
Hu, X., Li, J., Bai, Y., Mater. Lett. 194, 224 (2017).CrossRefGoogle Scholar
Wang, S.D., Ma, Q., Wang, K., Ma, P.B., Int. J. Biol. Macromol. 111, 237 (2018).CrossRefGoogle Scholar
Wang, Q., Chu, Y., He, J., Shao, W., Zhou, Y., Qi, K., Wang, L., Cui, S., Mater. Sci. Eng. C 80, 232 (2017).CrossRefGoogle Scholar
Gandhi, M., Yang, H., Shor, L., Ko, F., Polymer 50, 1918 (2009).CrossRefGoogle Scholar
Zuo, L.Y., Zhang, F., Gao, B., Zuo, B.Q., Fibres Text. East. Eur. 25, 40 (2017).CrossRefGoogle Scholar
Wei, K., Xia, J.H., Kim, B.S., Kim, I.S., J. Polym. Sci. A 18, 579 (2011).Google Scholar
Ayutsede, J., Gandhi, M., Sukigara, S., Ye, H., Hsu, C.M., Gogotsi, Y., Ko, F., Biomacromolecules 7, 208 (2006).CrossRefGoogle Scholar
Pan, C., Xie, Q., Hu, Z., Yang, M., Zhu, L., Fibers Polym. 16, 1781 (2015).CrossRefGoogle Scholar
Yang, Y., Ding, X., Zou, T., Peng, G., Liu, H., Fan, Y., RSC Adv. 7, 7954 (2017).CrossRefGoogle Scholar
Zhang, M., Wang, C., Qi, W., Jian, M., Zhang, Y., ACS Appl. Mater. Interfaces 8, 20894 (2016).CrossRefGoogle ScholarPubMed
Hou, J., Xie, Y., Ji, A., Cao, A., Fang, Y., Shi, E., ACS Appl. Mater. Interfaces 10, 6793 (2018).CrossRefGoogle Scholar
Wang, C., Xia, K., Zhang, M., Jian, M., Zhang, Y., ACS Appl. Mater. Interfaces 9, 39484 (2017).CrossRefGoogle ScholarPubMed
Li, X., Zong, L., Wu, X., You, J., Li, M., Li, C., J. Mater. Chem. C 6, 3212 (2018).CrossRefGoogle Scholar
Naskar, D., Bhattacharjee, P., Ghosh, A.K., Mandal, M., Kundu, S.C., ACS Appl. Mater. Interfaces 9, 19356 (2017).CrossRefGoogle Scholar
Steven, E., Saleh, W.R., Lebedev, V., Acquah, S.F.A., Laukhin, V., Alamo, R.G., Brooks, J.S., Nat. Commun. 4, 2435 (2013).CrossRefGoogle Scholar
Wang, Y., Guo, J., Zhou, L., Ye, C., Omenetto, F.G., Kaplan, D.L., Ling, S., Adv. Funct. Mater 28, 201805305 (2018).Google Scholar