Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-03T08:26:57.753Z Has data issue: false hasContentIssue false

Interface-assisted spintronics: Tailoring at the molecular scale

Published online by Cambridge University Press:  15 July 2014

Nicolae Atodiresei
Affiliation:
Peter Grünberg Institut and Institute for Advanced Simulation, Forschungszentrum Jülich and JARA, Germany; [email protected]
Karthik V. Raman
Affiliation:
Solid State and Structural Chemistry Unit, Indian Institute of Science (IISc), Bangalore, India; [email protected]
Get access

Abstract

Organic molecules adsorbed on magnetic surfaces offer the possibility to merge the concepts of molecular electronics with spintronics to build future nanoscale data storage, sensing, and computing multifunctional devices. In order to engineer the functionalities of such hybrid spintronic devices, an understanding of the electronic and magnetic properties of the interface between carbon-based aromatic materials and magnetic surfaces is essential. In this article, we discuss recent progress in the study of spin-dependent chemistry and physics associated with the above molecule-ferromagnet interface by combining state-of-the-art experiments and theoretical calculations. The magnetic properties such as molecular magnetic moment, electronic interface spin-polarization, magnetic anisotropy, and magnetic exchange coupling can be specifically tuned by an appropriate choice of the organic material and the magnetic substrate. These reports suggest a gradual shift in research toward an emerging subfield of interface-assisted molecular spintronics.

Type
Research Article
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Xiong, Z.H., Wu, D., Vardeny, Z.V., Shi, J., Nature 427, 821 (2004).Google Scholar
Dediu, V., Hueso, L.E., Bergenti, I., Riminucci, A., Borgatti, F., Graziosi, P., Newby, C., Casoli, F., De Jong, M.P., Taliani, C., Zhan, Y., Phys. Rev. B: Condens. Matter 78, 115203 (2008).CrossRefGoogle Scholar
Shim, J.H., Raman, K.V., Park, Y.J., Santos, T.S., Miao, G.X., Satpati, B., Moodera, J.S., Phys. Rev. Lett. 100, 226603 (2008).Google Scholar
Raman, K.V., Watson, S.M., Shim, J.H., Borchers, J.A., Chang, J., Moodera, J.S., Phys. Rev. B: Condens. Matter 80, 195212 (2009).Google Scholar
Yoo, J.-W., Jang, H.W., Prigodin, V.N., Kao, C., Eom, C.B., Epstein, A.J., Phys. Rev. B: Condens. Matter 80, 205207 (2009).Google Scholar
Nguyen, T.D., Hukic-Markosian, G., Wang, F., Wojcik, L., Li, X.G., Ehrenfreund, E., Vardeny, Z.V., Nat. Mater. 9, 345 (2010).Google Scholar
Vardeny, Z.V., Organic Spintronics (CRC Press, Boca Raton, FL, 2010).CrossRefGoogle Scholar
Lin, R., Wang, F., Rybicki, J., Wohlgenannt, M., Hutchinson, K.A., Phys. Rev. B: Condens. Matter 81, 195214 (2010).CrossRefGoogle Scholar
Jiang, J.S., Pearson, J.E., Bader, S.D., Phys. Rev. B: Condens. Matter 77, 035303 (2008).Google Scholar
Raman, K.V., “Spin Injection and Transport in Organic Semiconductors,” PhD thesis, MIT (2011).Google Scholar
Santos, T.S., Lee, J.S., Migdal, P., Lekshmi, I.C., Satpati, B., Moodera, J.S., Phys. Rev. Lett. 98, 016601 (2007).Google Scholar
Xu, W., Szulczewski, G., LeClair, P., Navarrete, I., Schad, R., Miao, G., Guo, H., Gupta, A., Appl. Phys. Lett. 90, 072506 (2007).Google Scholar
Barraud, C., Seneor, P., Mattana, R., Fusil, S., Bouzehouane, K., Deranlot, C., Graziosi, P., Hueso, L., Bergenti, I., Dediu, V., Petroff, F., Fert, A., Nat. Phys. 6, 615 (2010).Google Scholar
Moodera, J.S., Miao, G.X., Santos, T.S., Phys. Today 46 (April 2010).Google Scholar
Meservey, R., Tedrow, P.M., Phys. Rep. 238, 173 (1994).Google Scholar
Sanvito, S., Nat. Phys. 6, 562 (2010).Google Scholar
Langreth, D.C., Lundqvist, B.I., Chakarova-Kack, S.D., Cooper, V.R., Dion, M., Hyldgaard, P., Kelkkanen, A., Kleis, J., Kong, L., Li, S., Moses, P.G., Murray, E., Puzder, A., Rydberg, H., Schröder, E., Thonhauser, T., J. Phys. Condens. Matter 21, 084203 (2009).Google Scholar
Neaton, J.B., Hybertsen, M.S., Louie, S.G., Phys. Rev. Lett. 97, 216405 (2006).Google Scholar
Garcia-Lastra, J.M., Thygesen, K.S., Phys. Rev. Lett. 106, 187402 (2011).Google Scholar
Fleming, I., Frontier Orbitals and Organic Chemical Reactions (Wiley, London, 1978).Google Scholar
Brede, J., Atodiresei, N., Kuck, S., Lazic, P., Caciuc, V., Morikawa, Y., Hoffmann, G., Blügel, S., Wiesendanger, R., Phys. Rev. Lett. 105, 047204 (2010).CrossRefGoogle Scholar
Lennartz, M.C., Caciuc, V., Atodiresei, N., Karthäuser, S., Blügel, S., Phys. Rev. Lett. 105, 066801 (2010).Google Scholar
Hohenberg, P., Kohn, W., Phys. Rev. 136, B864 (1964).Google Scholar
Ceperley, D.M., Alder, B.J., Phys. Rev. Lett. 45, 566 (1980).Google Scholar
Perdew, J.P., Burke, K., Ernzerhof, M., Phys. Rev. Lett. 77, 3865 (1996).Google Scholar
Dion, M., Rydberg, H., Schröder, E., Langreth, D.C., Lundqvist, B.I., Phys. Rev. Lett. 92, 246401 (2004).CrossRefGoogle Scholar
Lazic, P., Alaei, M., Atodiresei, N., Caciuc, V., Brako, R., Blügel, S., Phys. Rev. B: Condens. Matter 181, 045401 (2010).CrossRefGoogle Scholar
Grimme, S., J. Comput. Chem. 27, 1787 (2006).Google Scholar
Klimes, J., Michaelides, A., J. Chem. Phys. 137, 120901 (2012).Google Scholar
Atodiresei, N., Caciuc, V., Lazic, P., Blügel, S., Phys. Rev. Lett. 102, 136809 (2009).CrossRefGoogle Scholar
Atodiresei, N., Caciuc, V., Lazic, P., Blügel, S., Phys. Rev. B: Condens. Matter 84, 172402 (2011).Google Scholar
Atodiresei, N., Brede, J., Lazic, P., Caciuc, V., Hoffmann, G., Wiesendanger, R., Blügel, S., Phys. Rev. Lett. 105, 066601 (2010).CrossRefGoogle Scholar
Raman, K.V., Nat. Nanotechnol. 8, 886 (2013).Google Scholar
Raman, K.V., Kamerbeek, A.M., Mukherjee, A., Atodiresei, N., Sen, T.K., Lazic, P., Caciuc, V., Michel, R., Stalke, D., Mandal, S.K., Blügel, S., Münzenberg, M., Moodera, J.S., Nature 493, 509 (2013).Google Scholar
Raman, K.V., Chang, J., Moodera, J.S., Org. Electron. 12, 1275 (2011).Google Scholar
Schwöbel, J., Fu, Y., Brede, J., Dilullo, A., Hoffmann, G., Klyatskaya, S., Ruben, M., Weisendanger, R., Nat. Commun. 3, 953 (2012).Google Scholar
Kawahara, S.L., Lagoute, J., Repain, V., Chacon, C., Girard, Y., Rousset, S., Smogunov, A., Barreteau, C., Nano Lett. 12, 4558 (2012).CrossRefGoogle Scholar
Raman, K.V., Moodera, J.S., US Patent 20,130,100,724 (2013).Google Scholar
Verdaguer, M., Science 272, 698 (1996).Google Scholar
Leuenberger, M.N., Loss, D., Nature 410, 789 (2001).Google Scholar
Decker, R., Brede, J., Atodiresei, N., Caciuc, V., Blügel, S., Wiesendanger, R., Phys. Rev. B: Condens. Matter 87, 041403(R) (2013).Google Scholar
Miguel, J., Hermanns, C.F., Bernien, M., Krüger, A., Kuch, W., J. Phys. Chem. Lett. 2, 1455 (2011).Google Scholar
Siegmann, H.C., J. Phys. Condens. Matter 4, 8395 (1992).Google Scholar
Miller, J.S., Drillon, M., Eds., Magnetism: Molecules to Materials III: Nanosized Magnetic Materials (Wiley-VCH, Germany, 2002), vol. 3.Google Scholar
Callsen, M., Caciuc, V., Kiselev, N., Atodiresei, N., Blügel, S., Phys. Rev. Lett. 111, 106805 (2013).Google Scholar