Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-27T07:30:08.342Z Has data issue: false hasContentIssue false

Interactions and Dynamics in Charge-Stabilized Colloids

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

Perhaps the most remarkable observation one can make about colloidal suspensions is that they exist at all. Particles dispersed in a fluid medium have a natural tendency to aggregate under the influence of van der Waals attraction. Yet the fortunes of a great many natural and industrial processes require colloidal particles to remain dispersed or at least to aggregate at a controlled rate. The existence of colloidal suspensions as varied as milk, inks, and metallic sols attests to the efficacy of a variety of stabilizing mechanisms. As early as 1809, Russel realized that many naturally occurring colloidal particles are charged. By the end of the century, Schultz and Hardy demonstrated that the resulting electro-static repulsions were strong enough to stabilize their suspensions against flocculating. This mechanism—arguably the best understood—continues to yield new surprises despite more than a century of analysis. The most recent burst of activity has been driven by the development of new and quite general techniques for measuring colloidal and macromolecular interactions. Its counterintuitive result—that like-charged particles some-times attract each other—may have ramifications in areas as diverse as protein crystallization, self-assembly of nano-structures, and the stabilization of industrial suspensions. This article touches briefly on the well-established theory of electrostatic stabilization in colloidal suspensions. The emphasis here is on the approximations that have provided the community with an analytical theory at the expense of overlooking recently discovered effects.

Type
From Dynamics to Devices: Directed Self-Assembly of Colloidal Materials
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Russel, W.B., Saville, D.A., and Schowalter, W.R., Colloidal Dispersions, Cambridge Monographs on Mechanics and Applied Mathematics (Cambridge University Press, Cambridge, 1989).CrossRefGoogle Scholar
2.Derjaguin, B.V. and Landau, L., Acta Phys. (URSS) 14 (6) (1941) p. 633.Google Scholar
3.Verwey, E.J. and Overbeek, J.T.G., Theory of the Stability of Lyophobic Colloids (Elsevier, Amsterdam, 1948).Google Scholar
4.Onsager, L., Chem. Rev. 13 (1933) p. 73.CrossRefGoogle Scholar
5.Levin, Y., Barbosa, M.C., and Tamashiro, M.N., Europhys. Lett. 41 (2) (1998) p. 123.CrossRefGoogle Scholar
6.Pailthorpe, B.A. and Russel, W.B., J. Colloid I. Sci. 89 (2) (1982) p. 563.CrossRefGoogle Scholar
7.Israelachvili, J., Intermolecular and Surface Forces, 2nd ed. (Academic Press, London, 1992).Google Scholar
8.Alexander, S., Chaikin, P.M., Grant, P., Morales, G.J., Pincus, P., and Hone, D., J. Chem. Phys. 80 (11) (1984) p. 5776.CrossRefGoogle Scholar
9.Lowen, H., Madden, P.A., and Hansen, J-P., Phys. Rev. Lett. 68 (7) (1992) p. 1081.CrossRefGoogle Scholar
10.Löwen, H., Palberg, T., and Simon, R., Phys. Rev. Lett. 70 (10) (1993) p. 1557.CrossRefGoogle Scholar
11.Gisler, T., Schulz, S.F., Borkovec, M., Sticher, H., Schurtenberger, P., D'Aguanno, B., and Klein, R., J. Chem. Phys. 101 (11) (1994) p. 9924.CrossRefGoogle Scholar
12.Stevens, M.J., Falk, M.L., and Robbins, M.O., J. Chem. Phys. 104 (13) (1996) p. 5209.CrossRefGoogle Scholar
13.Crocker, J.C. and Grier, D.G., J. Colloid. I. Sci. 179 (1996) p. 298.CrossRefGoogle Scholar
14.D'Amico, I. and Lowen, H., Physica A 237 (1997) p. 25.CrossRefGoogle Scholar
15.Behrens, S.H., Borkovec, M., and Schurtenberger, P., Langmuir 14 (8) (1998) p. 1951.CrossRefGoogle Scholar
16.Vanderhoff, J.W., Vitkuske, J.F., Bradford, E.B., and Alfrey, T., J. Polym. Sci. 20 (1956) p. 225.CrossRefGoogle Scholar
17.Sugimoto, T., Adv. Colloid I. Sci. 28 (1987) p. 65.CrossRefGoogle Scholar
18.Pieranski, P., Contemp. Phys. 24 (1) (1983) p. 25.CrossRefGoogle Scholar
19.Monovoukas, Y. and Gast, A.P., J. Colloid I. Sci. 128 (2) (1989) p. 533.CrossRefGoogle Scholar
20.Sirota, E.B., Ou-Yang, H.D., Sinha, S.K., Chaikin, P.M., Axe, J. D., and Fujii, Y., Phys. Rev. Lett. 62 (13) (1989) p. 1524.CrossRefGoogle Scholar
21.Hachisu, S., Kobayashi, Y., and Kose, A., J. Colloid I. Sci. 42 (2) (1973) p. 342.CrossRefGoogle Scholar
22.Murray, C.A. and van Winkle, D.H., Phys. Rev. Lett. 58 (12) (1987) p. 1200.CrossRefGoogle Scholar
23.Schaertl, W. and Sillescu, H., J. Colloid I. Sci. 155 (1993) p. 313.CrossRefGoogle Scholar
24.Kremer, K., Robbins, M.O., and Grest, G.S., Phys. Rev. Lett. 57 (21) (1986) p. 2694.CrossRefGoogle Scholar
25.Stevens, M.J. and Robbins, M.O., J. Chem. Phys. 98 (3) (1993) p. 2319.CrossRefGoogle Scholar
26.Lindsay, H.M. and Chaikin, P.M., J. Chem. Phys. 76 (7) (1982) p. 3774.CrossRefGoogle Scholar
27.Robbins, M.O., Kremer, K., and Grest, G.S., J. Chem. Phys. 88 (5) (1988) p. 3286.CrossRefGoogle Scholar
28.Sogami, I., Phys. Lett. A 96 (4) (1983) p. 199.CrossRefGoogle Scholar
29.Sogami, I. and Ise, N., J. Chem. Phys. 81 (12) (1984) p. 6320.CrossRefGoogle Scholar
30.Arora, A.K., Tata, B.V.R., Sood, A.K., and Kesavamoorthy, R., Phys. Rev. Lett. 60 (23) (1988) p. 2438.CrossRefGoogle Scholar
31.Tata, B.V.R., Rajalakshmi, M., and Arora, A.K., Phys. Rev. Lett. 69 (26) (1992) p. 3778.CrossRefGoogle Scholar
32.Dosho, S., Ise, N., Ito, K., Iwai, S., Kitano, H., Hiromi, M., Matsuoka, H., Nakamura, H., Okumura, H., Ono, T., Sogami, I.S., Ueno, Y., Yoshida, H., and Yoshiyama, T., Langmuir 9 (1993) p. 394.CrossRefGoogle Scholar
33.Ise, N. and Matsuoka, H., Macromolecules 27 (1994) p. 5218.CrossRefGoogle Scholar
34.Ise, N. and Smalley, M.V., Phys. Rev. B 50 (22) (1994) p. 16722.CrossRefGoogle Scholar
35.Ito, K., Yoshida, H., and Ise, N., Science 263 (1994) p. 66.CrossRefGoogle Scholar
36.Yoshida, H., Ise, N., and Hashimoto, T., J. Chem. Phys. 103 (23) (1995) p. 10146.CrossRefGoogle Scholar
37.Tata, B.V.R., Yamahara, E., Rajamani, P.V., and Ise, N., Phys. Rev. Lett. 78 (13) (1997) p. 2660.CrossRefGoogle Scholar
38.Jönsson, B., Åkesson, T., and Woodward, C.E., in Ordering and Phase Transitions in Charged Colloids, edited by Arora, A.K. and Tata, B.V.R., Complex Fluids an d Fluid Microstructures (VCH Publishers, New York, 1996) p. 295.Google Scholar
39.Smalley, M.V., Ordering and Phase Transitions in Charged Colloids, p. 315.Google Scholar
40.Schmitz, K.S., Langmuir 13 (22) (1997) p. 5849.CrossRefGoogle Scholar
41.Sarid, D., Scanning Force Microscopy With Applications to Electric, Magnetic and Atomic Forces, Oxford Series on Optical Sciences (Oxford University Press, New York, 1991).Google Scholar
42.Israelachvili, J.N. and McGuiggan, P.M., Science 241 (1988) p. 795.CrossRefGoogle Scholar
43.Gee, M.L., McGuiggan, P.M., Israelachvili, J.N., and Homola, A.M., J. Chem. Phys. 93 (3) (1990) p. 1895.CrossRefGoogle Scholar
44.Ducker, W.A., Senden, T.J., and Pashley, R.M., Nature 353 (1991) p. 239.CrossRefGoogle Scholar
45.Ducker, W.A., Senden, T.J., and Pashley, R.M., Langmuir 8 (1992) p. 1831.CrossRefGoogle Scholar
46.Hansen, J-P. and McDonald, I.R., Theory of Simple Liquids, 2nd ed. (Academic Press, London, 1986).Google Scholar
47.Risken, H., The Fokker-Planck Equation, Springer Series in Synergetics, 2nd ed (Springer-Verlag, Berlin, 1989).Google Scholar
48.Bongers, J., Manteufel, H., Versmold, H., and Vondermassen, K., J. Chem. Phys. 108 (23) (1998) p. 9937.CrossRefGoogle Scholar
49.Vondermassen, K., Bongers, J., Mueller, A., and Versmold, H., Langmuir 10 (1994) p. 1351.CrossRefGoogle Scholar
50.Kepler, G.M. and Fraden, S., Phys. Rev. Lett. 73 (3) (1994) p. 356.CrossRefGoogle Scholar
51.Rajagopalan, R. and Rao, K.S., Phys. Rev. E 55 (4) (1997) p. 4423.Google Scholar
52.Carbajal-Tinoco, M.D., Castro-Román, F., and Arauz-Lara, J.L., Phys. Rev. E 53 (1996) p. 3745.Google Scholar
53.Rao, K.S. and Rajagopalan, R., Phys. Rev. E 57 (3) (1998) p. 3227.Google Scholar
54.Acuña-Campa, H., Carbajal-Tinoco, M.D., Arauz-Lara, J.L., and Medina-Noyola, M., Phys. Rev. Lett. 80 (26) (1998) p. 5802.CrossRefGoogle Scholar
55.Ashkin, A., Dziedzic, J.M., Bjorkholm, J.E., and Chu, S., Opt. Lett. 11 (5) (1986) p. 288.CrossRefGoogle Scholar
56.Svoboda, K. and Block, S.M., Annu. Rev. Biophys. Biomolec. Struc. 23 (1994) p. 247.CrossRefGoogle Scholar
57.Ashkin, A., Proc. Natl. Acad. Sci., USA 94 (1997) p. 4853.CrossRefGoogle Scholar
58.Grier, D.G., Current Opinion Colloid I. Sci. 2 (1997) p. 264.CrossRefGoogle Scholar
59.Sugimoto, T., Takahashi, T., Itoh, H., Sato, S-i., and Muramatsu, A., Langmuir 13 (1997) p. 5528.CrossRefGoogle Scholar
60.Crocker, J.C. and Grier, D.G., Phys. Rev. Lett. 73 (2) (1994) p. 352.CrossRefGoogle Scholar
61.Crocker, J.C. and Grier, D.G., Phys. Rev. Lett. 77 (9) (1996) p. 1897.CrossRefGoogle Scholar
62.Larsen, A.E. and Grier, D.G., Nature 385 (1997) p. 230.CrossRefGoogle Scholar
63.Her, R.K., The Chemistry of Silica (John Wiley & Sons, New York, 1979).Google Scholar
64.Podgornik, R. and Parsegian, V.A., Phys. Rev. Lett. 80 (7) (1998) p. 1560.CrossRefGoogle Scholar
65.Bowen, W.R. and Sharif, A.O., Nature 393 (1998) p. 663.CrossRefGoogle Scholar
66.van Roij, R. and Hansen, J-P., Phys. Rev. Lett. 79 (16) (1997) p. 3082.CrossRefGoogle Scholar
67.Hastings, R., J. Chem. Phys. 68 (2) (1978) p. 675.CrossRefGoogle Scholar
68.Kirkwood, J.G. and Poirier, J.C., J. Chem. Phys. 58 (1954) p. 591.CrossRefGoogle Scholar
69.Palberg, T. and Würth, M., Phys. Rev. Lett. 72 (5) (1994) p. 786.CrossRefGoogle Scholar
70.Tata, B.V.R. and Arora, A.K., Phys. Rev. Lett. p. 787.Google Scholar