Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-27T19:51:47.355Z Has data issue: false hasContentIssue false

Integrated microchips for biological analysis fabricated by femtosecond laser direct writing

Published online by Cambridge University Press:  14 December 2011

Koji Sugioka
Affiliation:
Riken Advanced Science Institute; [email protected]
Ya Cheng
Affiliation:
Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences; [email protected]
Get access

Abstract

Microchips have revolutionized biological analysis since they can be used to perform biochemical analysis with high efficiency and accuracy. Femtosecond laser direct writing followed by wet chemical etching can be used to fabricate hollow microstructures with almost any three-dimensional (3D) structure without stacking or bonding. This permits microfluidic systems to be integrated with micro-optical components (e.g., mirrors and lenses) and micromechanical components (e.g., valves and pumps) in a glass chip by a single continuous process. Furthermore, other micro-optical components such as optical waveguides and attenuators can be integrated by additional femtosecond laser direct writing. Thus, femtosecond laser direct writing can be used to fabricate functional microfluidics, optofluidics, lab-on-a-chip devices, and micro-total analysis systems. In this study, 3D femtosecond laser micromachining is used to fabricate microchips integrated with functional microcomponents for biological analysis. Optofluidic systems, in which microfluidic components are integrated with micro-optical components, are used to detect single cells and perform high-sensitivity analysis of liquid samples by optical methods. Another interesting microchip is introduced, namely nanoaquariums, which is used for performing dynamic observations of microorganisms and bacteria and allows the functions of microorganisms and bacteria to be determined, such as elucidation of the gliding mechanism of Phormidium to seedling roots for growth acceleration of vegetables.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Burns, M.A., Johnson, B.N., Brahmasandra, A.N., Handique, K., Webster, J.R., Krishnan, M., Sammarco, T.S., Man, P.M., Jones, D., Heldsinger, D., Mastrangelo, C.H., Burke, D.T., Science 282, 484 (1998).CrossRefGoogle Scholar
2.Dittrich, P.S., Tachikawa, K., Manz, A., Anal. Chem. 78, 3887 (2006).CrossRefGoogle Scholar
3.McDonald, J.C., Whitesides, G.M., Acc. Chem. Res. 35, 491 (2002).CrossRefGoogle Scholar
4.Davis, K.M., Miura, K., Sugiomto, N., Hirao, K., Opt. Lett. 21, 1729 (1996).CrossRefGoogle Scholar
5.Marcinkevicius, A., Juodkazis, S., Watanabe, M., Miwa, M., Matsuo, S., Misawa, H., Nishii, J., Opt. Lett. 26, 277 (2001).CrossRefGoogle Scholar
6.Masuda, M., Sugioka, K., Cheng, Y., Aoki, N., Kawachi, M., Shihoyama, K., Toyoda, K., Helvajian, H., Midorikawa, K., Appl. Phys. A76, 857 (2003).CrossRefGoogle Scholar
7.Sugioka, K., Cheng, Y., Midorikawa, K., Appl. Phys. A81, 1 (2005).CrossRefGoogle Scholar
8.Masuda, M., Sugioka, K., Cheng, Y., Hongo, T., Shihoyama, K., Takai, H., Miyaloto, I., Midorikawa, K., Appl. Phys. A78, 1029 (2004).CrossRefGoogle Scholar
9.Matsuo, S., Kiyama, S., Shichijo, Y., Tomita, T., Hashimoto, S., Hosokawa, Y., Masuhara, H., Appl. Phys. Lett. 93, 051107 (2008).CrossRefGoogle Scholar
10.Cheng, Y., Sugioka, K., Midorikawa, K., Masuda, M., Toyoda, K., Kawachi, M., Shihoyama, K., Opt. Lett. 28, 1144 (2003).CrossRefGoogle Scholar
11.Cheng, Y., Tsai, H.L., Sugioka, K., Midorikawa, K., Appl. Phys. A85, 11 (2006).CrossRefGoogle Scholar
12.Wang, Z., Sugioka, K., Midorikawa, K., Appl. Phys. A89, 951 (2007).CrossRefGoogle Scholar
13.Yamada, K., Watanabe, W., Toma, T., Itoh, K., Nishii, J., Opt. Lett. 26, 19 (2001).CrossRefGoogle Scholar
14.Scaffer, C.B., Brodeur, A., Garcia, J.F., Mazur, E., Opt. Lett. 26, 93 (2001).CrossRefGoogle Scholar
15.Bricchi, E., Mills, J.D., Kazamsky, P.G., Klappauf, B.G., Baumberg, J.J., Opt. Lett. 27, 2200 (2002).CrossRefGoogle Scholar
16.Kawamura, K., Hirano, M., Kamiya, T., Hosono, H., Appl. Phys. Lett. 81, 1137 (2002).CrossRefGoogle Scholar
17.Watanabe, W., Kuroda, D., Itoh, K., Nishii, J., Opt. Express 10, 978 (2002).CrossRefGoogle Scholar
18.Gorelik, T., Will, M., Nolte, S., Tünnermann, A., Glatzel, U., Appl. Phys. A76, 309 (2003).CrossRefGoogle Scholar
19.Watanabe, W., Asano, T., Yamada, K., Itoh, K., Nishii, J., Opt. Lett. 28, 2491 (2003).CrossRefGoogle Scholar
20.Sudrie, L., Winick, K.A., J. Lightwave Technol. 21, 246 (2003).Google Scholar
21.Hanada, Y., Sugioka, K., Kawano, H., Ishikawa, I.S., Miyawaki, A., Midorikawa, K., Biomed. Microdevices 10, 403 (2008).CrossRefGoogle Scholar
22.Hanada, Y., Sugioka, K., Ishikawa, I.S., Kawano, H., Miyawaki, A., Midorikawa, K., Lab Chip 11, 2109 (2011).CrossRefGoogle Scholar
23.Crespi, A., Gu, Y., Ngamsom, B., Hoekstra, H.J.W.M., Dongre, C., Pollnau, M., Ramponi, R., van den Vlekkert, H.H., Watts, P., Cerullo, G., Osellame, R., Lab Chip 10, 1167 (2010).CrossRefGoogle Scholar
24.Kim, M., Hwang, D.J., Jeon, H., Hiromatsu, K., Grigoropoulos, C.P., Lab Chip 9, 311 (2009).CrossRefGoogle Scholar
25.Bragheri, F., Ferrara, L., Bellini, N., Vishnubhatla, K.C., Minzioni, P., Ramponi, R., Osellame, R., Cristiani, I., J. Biophoton. 3, 234 (2010).CrossRefGoogle Scholar
26.Schaap, A., Bellouard, Y., Rohrlack, T., Biomed. Opt. Express 2, 658 (2011).CrossRefGoogle Scholar
27.Kondo, Y., Qiu, J.R., Mitsuyu, T., Hirao, K., Yoko, T., J. Jpn. Appl. Phys. 38, L1145 (1999).Google Scholar
28.Stookey, S.D., Ind. Eng. Chem. 45, 115 (1953).CrossRefGoogle Scholar
30.Hongo, T., Sugioka, K., Niino, H., Cheng, Y., Masuda, M., Miyamoto, I., Takai, H., Midorikawa, K., J. Appl. Phys. 97, 063517 (2005).CrossRefGoogle Scholar
31.Fisette, B., Meunier, M., J. Laser Micro/Nanoeng. 1, 7 (2006).Google Scholar
32.Fisette, B., Busque, F., Degorce, J.Y., Meunier, M., Appl. Phys. Lett. 88, 091104 (2006).CrossRefGoogle Scholar
33.Kiyama, S., Matsuo, S., Hashimoto, S., Morihira, Y., J. Phys. Chem. C113, 11560 (2009).Google Scholar
34.Eaton, S.M., Zhang, H., Herman, P.R., Yoshino, F., Shah, L., Bovatse, K.J., Arai, A.Y., Opt. Express 13, 4708 (2005).CrossRefGoogle Scholar
35.Dharmadhikari, J.A., Dharmadhikari, A.K., Bhatnagar, A., Mallik, A., Singh, P.C., Dhaman, R.K., Mathur, D., Opt. Commun. 284, 630 (2011).CrossRefGoogle Scholar
36.Zhang, H., Eaton, S.M., Herman, P.R., Opt. Express 14, 4826 (2006).CrossRefGoogle Scholar
37.Bellouard, Y., Said, A.A., Dugan, M., Bado, P., Proc. Mater. Res. Soc. Fall Meeting 782, 63 (2003).Google Scholar
38.Osellame, R., Maselli, V., Vazquez, R.M., Ramponi, R., Cerullo, G., Appl. Phys. Lett. 90, 231118 (2007).CrossRefGoogle Scholar
39.Vazquez, R.M., Osellame, R., Nolli, D., Dongre, C., van den Vlekkert, H., Ramponi, R., Pollnau, M., Cerullo, G., Lab Chip 9, 91 (2009).CrossRefGoogle Scholar
40.Applegate, R.W., Squier, J., Vestad, T., Oakey, J., Marr, D.W.M., Bado, P., Dugan, M.A., Said, A.A., Lab Chip 6, 422 (2006).CrossRefGoogle Scholar
41.Wang, Z., Sugioka, K., Midorikawa, K., Appl. Phys. A93, 225 (2008).CrossRefGoogle Scholar
42.Sugioka, K., Hanada, Y., Midorikawa, K., Laser Photonics Rev. 4, 386 (2010).CrossRefGoogle Scholar
43.Yamahata, C., Vandevyver, C., Lacharme, F., Izewska, P., Vogel, H., Freitag, R., Gijs, M.A.M., Lab Chip 5, 1083 (2005).CrossRefGoogle Scholar
44.Choi, Y., McClain, M.A., LaPlaca, M.C., Frazier, A.B., Allen, M.G., Biomed. Microdevices 9, 7 (2007).CrossRefGoogle Scholar
45.Haeberle, S., Zengerle, R., Lab Chip 7, 1094 (2007).CrossRefGoogle Scholar
46.Okano, K., Hunter, E., Fusetani, N., J. Exp. Zool. 276, 138 (1996).3.0.CO;2-P>CrossRefGoogle Scholar
47.Yoshimura, K., Shingyoji, C., Takahashi, K., Cell Motil. Cytoskeleton 36, 236 (1997).3.0.CO;2-5>CrossRefGoogle Scholar
48.Fleming, S.L., Rieder, C.L., Cell Motil. Cytoskeleton 56, 141 (2003).CrossRefGoogle Scholar
49.Stephens, D.J., Allan, V.J., Science 300, 82 (2003).CrossRefGoogle Scholar
50.Nichols, K.M., Rikmenspoel, R., J. Cell Sci. 23, 211 (1977).CrossRefGoogle Scholar
51.Nichols, K.M., Rikmenspoel, R., J. Cell Sci. 29, 233 (1978).CrossRefGoogle Scholar
52.Halfen, L.N., Castenholz, R.W., Nature 225, 1163 (1970).CrossRefGoogle Scholar
53.Hoiczyk, E., J. Bacteriol. 180, 3923 (1998).CrossRefGoogle Scholar