Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-24T13:39:07.331Z Has data issue: false hasContentIssue false

Integrated circuits in silicon carbide for high-temperature applications

Published online by Cambridge University Press:  08 May 2015

Carl-Mikael Zetterling*
Affiliation:
KTH Royal Institute of Technology, Sweden; [email protected]
Get access

Abstract

High-temperature electronic applications are presently limited to a maximum operational temperature of 225°C for commercial integrated circuits (ICs) using silicon. One promise of silicon carbide (SiC) is high-temperature operation, although most commercial efforts have targeted high-voltage discrete devices. Depending on the technology choice, several processing challenges are involved in making ICs using SiC. Bipolar, metal oxide semiconductor field-effect transistors, and junction field-effect transistor technologies have been demonstrated in operating temperatures of up to 600°C. Current technology performance and processing challenges relating to making ICs in SiC are reviewed in this article.

Type
Research Article
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Cressler, J.D., Mantooth, H.A., Eds., Extreme Environment Electronics (CRC Press, UK, 2013).Google Scholar
Zetterling, C.-M., Ed., Process Technology for Silicon Carbide Devices (IEE, London, 2002).CrossRefGoogle Scholar
Kimoto, T., Cooper, J.A., Fundamentals of Silicon Carbide Technology (Wiley, New York, 2014).CrossRefGoogle Scholar
Ryu, S.-H., Kornegay, K.T., Cooper, J.A. Jr., Melloch, M.R., IEEE Trans. Electron Devices 45, 45 (1998).Google Scholar
Young, R.A.R., Clark, D., Cormack, J.D., Murphy, A.E., Smith, D.A., Thompson, R.F., Ramsay, E.P., Finney, S., Mater. Sci. Forum 740742, 1065 (2013).CrossRefGoogle Scholar
Xie, W., Cooper, J.A. Jr., Melloch, M.R., IEEE Electron Device Lett. 15, 455 (1994).CrossRefGoogle Scholar
Ghandi, R., Chen, C.-P., Yin, L., Zhu, X., Yu, L., Arthur, S., Ahmad, F., Sandvik, P., IEEE Electron Device Lett. 35, 1206 (2014).CrossRefGoogle Scholar
Lee, J.-Y., Singh, S., Cooper, J.A. Jr., IEEE Trans. Electron Devices 55, 1946 (2008).CrossRefGoogle Scholar
Lanni, L., Malm, B.G., Östling, M., Zetterling, C.-M., IEEE Electron Device Lett. 34, 1091 (2013).CrossRefGoogle Scholar
Hedayati, R., Lanni, L., Rodriguez, S., Malm, B.G., Rusu, A., Zetterling, C.-M., IEEE Electron Device Lett. 35, 693 (2014).Google Scholar
Neudeck, P.G., Garverick, S.L., Spry, D.J., Chen, L.-Y., Beheim, G.M., Krasowski, M.J., Mehregany, M., Phys. Status Solidi A 206, 2329 (2009).CrossRefGoogle Scholar
Patil, A.C., Xiao-An, F., Mehregany, M., Garverick, S.L., Proc. IEEE Custom Integrated Circuits Conf. 73 (2009).Google Scholar
Chen, L.-Y., Spry, D., Neudeck, P.G., International Conference on High Temperature Electronics (2006).Google Scholar
Gaska, R., Gaevski, M., Deng, J., Jain, R., Simin, G., Shur, M., Proc. Eur. Solid State Device Res. Conf. 142 (2014).Google Scholar
Lanni, L., Malm, B.G., Östling, M., Zetterling, C.-M., IEEE Electron Device Lett. 35, 428 (2014).CrossRefGoogle Scholar
Lanni, L., “Silicon Carbide Bipolar Technology for High Temperature Integrated Circuits,” PhD thesis, KTH Royal Institute of Technology, Sweden (2014), available athttp://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-145401.Google Scholar