Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-24T01:59:58.989Z Has data issue: false hasContentIssue false

Insights into fundamental deformation processes from advanced in situ transmission electron microscopy

Published online by Cambridge University Press:  11 June 2019

Erdmann Spiecker
Affiliation:
Institute of Micro- and Nanostructure Research, and Center for Nanoanalysis and Electron Microscopy, Department of Materials Science and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany; [email protected]
Sang Ho Oh
Affiliation:
Department of Energy Science, Sungkyunkwan University, Republic of Korea; [email protected]
Zhi-Wei Shan
Affiliation:
Center for Advancing Materials Performance from the Nanoscale, and Hysitron Applied Research Center in China, State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, China; [email protected]
Yuichi Ikuhara
Affiliation:
Institute of Engineering Innovation, School of Engineering, The University of Tokyo, Japan; [email protected]
Scott X. Mao
Affiliation:
Department of Mechanical Engineering and Materials Science, University of Pittsburgh, USA; [email protected]
Get access

Abstract

In situ nanomechanical testing in (scanning) transmission electron microscopy provides unique opportunities for studying fundamental deformation processes in materials. New insights have been gained by combining advanced imaging techniques with novel preparation methods and controlled loading scenarios. For instance, by applying in situ high-resolution imaging during tensile deformation of metallic nanostructures, the interplay of dislocation slip and surface diffusion has been identified as the key enabler of superplasticity. Evidence for dislocation pinning by hydrogen defect complexes has been provided by in situ imaging under cyclic pillar compression in a tunable gas environment. And, for the very first time, individual dislocations have been moved around in situ in two-dimensional materials by combining micromanipulation and imaging in a scanning electron microscope.

Type
Advances in In situ Nanomechanical Testing
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Hirsch, P.B., Horne, R.W., Whelan, M.J., Philos. Mag. J. Theor. Exp. Appl. Phys. 1, 677 (1956).Google Scholar
Wilsdorf, H.G.F., Rev. Sci. Instrum. 29, 323 (1958).CrossRefGoogle Scholar
Kear, B.H., Rev. Sci. Instrum. 31, 1007 (1960).CrossRefGoogle Scholar
Yu, Q., Legros, M., Minor, A.M., MRS Bull . 40, 62 (2015).CrossRefGoogle Scholar
Dehm, G., Howe, J.M., Zweck, J., In-situ Electron Microscopy: SEM and TEM Applications in Physics, Chemistry and Materials Science (Wiley, Weinheim, Germany, 2012).CrossRefGoogle Scholar
Oh, S., Legros, M., Kiener, D., Dehm, G., Nat. Mater. 8, 95 (2009).CrossRefGoogle Scholar
Kiener, D., Minor, A.M., Nano Lett . 11, 3816 (2011).CrossRefGoogle Scholar
Liebig, J.P., Göken, M., Richter, G., Mačković, M., Przybilla, T., Spiecker, E., Pierron, O.N., Merle, B., Ultramicroscopy 171, 82 (2016).CrossRefGoogle Scholar
Mackovic, M., Przybilla, T., Dieker, C., Herre, P., Romeis, S., Stara, H., Schrenker, N., Peukert, W., Spiecker, E., Front. Mater. 4, 1 (2017).Google Scholar
Kiener, D., Zhang, Z., Šturm, S., Cazottes, S., Imrich, P., Kirchlechner, C., Dehm, G., Philos. Mag. 92, 3269 (2012).CrossRefGoogle Scholar
Lee, S., Jeong, J., Kim, Y., Han, S.M., Kiener, D., Oh, S.H., Acta Mater . 110, 283 (2016).CrossRefGoogle Scholar
Li, N., Wang, J., Mao, S., Wang, H., MRS Bull . 41, 305 (2016).CrossRefGoogle Scholar
Wang, L., Zhang, Z., Han, X., NPG Asia Mater . 5, e40 (2013).CrossRefGoogle Scholar
Dehm, G., Legros, M., Kiener, D., “In-Situ TEM Straining Experiments: Recent Progress in Stages and Small-Scale Mechanics,” in In-situ Electron Microscopy: SEM and TEM Applications in Physics, Chemistry and Materials Science, Dehm, G., Ed. (Wiley VCH Verlag, Weinheim, Germany, 2012), pp. 227254.Google Scholar
Tian, L., Li, J., Sun, J., Ma, E., Shan, Z.W., Sci. Rep. 3, 2113 (2013).CrossRefGoogle Scholar
Guo, W., Wang, Z., Li, J., Nano Lett . 15, 6582 (2015).CrossRefGoogle Scholar
Sun, J., He, L., Lo, Y.-C., Xu, T., Bi, H., Sun, L., Zhang, Z., Mao, S.X., Li, J., Nat. Mater. 13, 1007 (2014).CrossRefGoogle Scholar
Zhong, L., Sansoz, F., He, Y., Wang, C., Zhang, Z., Mao, S.X., Nat. Mater. 16, 439 (2017).CrossRefGoogle Scholar
Liu, P., Wei, X., Song, S., Wang, L., Hirata, A., Fujita, T., Han, X., Zhang, Z., Chen, M., Acta Mater . 165, 99 (2019).CrossRefGoogle Scholar
Shan, Z.W., Lu, L., Minor, A.M., Stach, E.A., Mao, S.X., JOM 60, 71 (2008).CrossRefGoogle Scholar
Qin, E.W., Lu, L., Tao, N.R., Tan, J., Lu, K., Acta Mater . 57, 6215 (2009).CrossRefGoogle Scholar
Beyerlein, I.J., Zhang, X., Misra, A., Annu. Rev. Mater. Res. 44 329 (2014).CrossRefGoogle Scholar
Ovid’ko, I.A., Sheinerman, A.G., Rev. Adv. Mater. Sci. 44, 1 (2016).Google Scholar
Sun, L., He, X., Lu, J., npj Comput. Mater. 4, 6 (2018).CrossRefGoogle Scholar
Shin, Y.A., Yin, S., Li, X., Lee, S., Moon, S., Jeong, J., Kwon, M., Yoo, S.J., Kim, Y.-M., Zhang, T., Gao, H., Oh, S.H., Nat. Commun. 7, 10772 (2016).CrossRefGoogle Scholar
Li, X., Yin, S., Oh, S.H., Gao, H., Scr. Mater . 133, 105 (2017).CrossRefGoogle Scholar
Ikuhara, Y., Suzuki, T., Kubo, Y., Philos. Mag. Lett. 66, 323 (1992).CrossRefGoogle Scholar
Ohmura, T., Minor, A.M., Stach, E.A., Morris, J.W., J. Mater. Res. 19, 3626 (2004).CrossRefGoogle Scholar
Imrich, P.J., Kirchlechner, C., Kiener, D., Dehm, G., Scr. Mater . 100, 94 (2015).CrossRefGoogle Scholar
Kondo, S., Mitsuma, T., Shibata, N., Ikuhara, Y., Sci. Adv. 2, e1501926 (2016).CrossRefGoogle Scholar
Johnson, W.H., Nature 11, 393 (1875).CrossRefGoogle Scholar
Cottrell, A.H., Bilby, B., Proc. Phys. Soc. Lond. A 62, 49 (1949).CrossRefGoogle Scholar
Robertson, I.M., Sofronis, P., Nagao, A., Martin, M., Wang, S., Gross, D., Nygren, K., Metall. Mater. Trans. A 46, 2323 (2015).CrossRefGoogle Scholar
Robertson, I., Eng. Fract. Mech. 64, 649 (1999).CrossRefGoogle Scholar
Robertson, I.M., Eng. Fract. Mech. 68, 671 (2001).CrossRefGoogle Scholar
Song, J., Curtin, W., Acta Mater . 68, 61 (2014).CrossRefGoogle Scholar
Song, J., Curtin, W., Nat. Mater. 12, 145 (2013).CrossRefGoogle Scholar
Xie, D., Li, S., Li, M., Wang, Z., Gumbsch, P., Sun, J., Ma, E., Li, J., Shan, Z., Nat. Commun. 7, 13341 (2016).CrossRefGoogle Scholar
Yazyev, O.V., Louie, S.G., Phys. Rev. B Condens. Matter 81, 195420 (2010).CrossRefGoogle Scholar
Warner, J.H., Margine, E.R., Mukai, M., Robertson, A.W., Giustino, F., Kirkland, A.I., Science 337, 209 (2012).CrossRefGoogle Scholar
Lehtinen, O., Kurasch, S., Krasheninnikov, A.V., Kaiser, U., Nat. Commun. 4, 2098 (2013).CrossRefGoogle Scholar
Alden, J.S., Tsen, A.W., Huang, P.Y., Hovden, R., Brown, L., Park, J., Muller, D.A., McEuen, P.L., Proc. Natl. Acad. Sci. U.S.A. 110, 11256 (2013).CrossRefGoogle Scholar
Butz, B., Dolle, C., Niekiel, F., Weber, K., Waldmann, D., Weber, H.B., Meyer, B., Spiecker, E., Nature 505, 533 (2014).CrossRefGoogle Scholar
Schweizer, P., Dolle, C., Spiecker, E., Sci. Adv. 4, eaat4712 (2018).CrossRefGoogle Scholar
Kisslinger, F., Ott, C., Heide, C., Kampert, E., Butz, B., Spiecker, E., Shallcross, S., Weber, H.B., Nat. Phys. 11, 650 (2015).CrossRefGoogle Scholar
Shallcross, S., Sharma, S., Weber, H.B., Nat. Commun. 8, 342 (2017).CrossRefGoogle Scholar
Müller, K., Ryll, H., Ordavo, I., Ihle, S., Strüder, L., Volz, K., Zweck, J., Soltau, H., Rosenauer, A., Appl. Phys. Lett. 101, 212110 (2012).CrossRefGoogle Scholar
Ozdol, V.B., Gammer, C., Jin, X.G., Ercius, P., Ophus, C., Ciston, J., Minor, A.M., Appl. Phys. Lett. 106, 253107 (2015).CrossRefGoogle Scholar
Gammer, C., Kacher, J., Czarnik, C., Warren, O.L., Ciston, J., Minor, A.M., Appl. Phys. Lett. 109, 081906 (2016).CrossRefGoogle Scholar
Pekin, T.C., Gammer, C., Ciston, J., Ophus, C., Minor, A.M., Scr. Mater. 146, 87 (2018).CrossRefGoogle Scholar