Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-27T10:01:53.406Z Has data issue: false hasContentIssue false

Infrared Vertical-Cavity Surface-Emitting Lasers: An Industrial Perspective

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

Optical components based on vertical-cavity surface-emitting lasers (VCSELs) are moving from 850-nm wavelengths to 1.31-μm and 1.55-μm wavelengths. These long-wavelength devices, enabled by new developments in materials technology, will compete directly with distributed-feedback (DFB) and Fabry-Pérot (FP) laser technologies in fiber-optic markets. In addition, the unique properties of VCSELs are opening up a new category of optically integrated components that are not possible with traditional edge-emitting laser source technologies. These VCSEL structures, such as linear and two-dimensional arrays, have the potential to dramatically reduce the cost structure of traditional optical networking equipment and provide a path for rapid growth in optical bandwidth.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. “Report: Transceivers Looking Up,” January 15, 2002, news wire feed, found on Light Reading—The Global Site for Optical Networking Web site, http://www.lightreading.com/document.asp?doc_id=10892 (accessed April 2002).Google Scholar
2.Kondow, M., Uomi, K., Niwa, A., Kitatani, T., Watahiki, S., and Yazawa, Y., Jpn. J. Appl. Phys., Part 1 35 (1996) p. 1273.CrossRefGoogle Scholar
3.Lindstrom, A., Fiber Systems Int. 3 (2002) p. 29.Google Scholar
4.Uchiyama, S., Yokouchi, N., and Ninomiya, T., IEEE Photon. Technol. Lett. 9 (1997) p. 141.CrossRefGoogle Scholar
5.Zhang, G. and Ovtchinnikov, A., Appl. Phys. Lett. 62 (1993) p. 1644.CrossRefGoogle Scholar
6.Jayaraman, V., Goodnough, T.J., Beam, T.L., Ahedo, F.M., and Maurice, R.A., IEEE Photon. Technol. Lett. 12 (2000) p. 1595.CrossRefGoogle Scholar
7.Lott, J.A., Ledentsov, N.N., Ustinov, V.M., Alferov, Zh.I., and Bimberg, D., in Proc. Lasers and Electro-Optics, CLEO ′01 (Optical Society of America, Washington, DC, 2001) p. 137.Google Scholar
8.Quochi, F., Kilper, D.C., Cunningham, J.E., Dinu, M., and Shah, J., IEEE Photon. Technol. Lett. 13 (2001) p. 921.CrossRefGoogle Scholar
9.Thompson, L.R., Chirovsky, L.M.F., Jackson, A.W., Naone, R.L., Galt, D., Prakash, S.R., Feld, S.A., Crom, M.V., Wasserbauer, J.G., Lange, M.D., and Kisker, D.W., in Proc. SPIE Vol. 4649 (SPIE — The International Society for Optical Engineering, Bellingham, WA, 2002) p. 25.Google Scholar
10.Babic, D.J., Piprek, J., Steubel, K., Mirin, R.P., Margalit, N.M., Mars, D.E., Bowers, J.E., and Hu, E.L., IEEE J. Quantum Electron. 33 (1997) p. 1369.CrossRefGoogle Scholar
11.Choquette, K.D., Klem, J.F., Fischer, A.J., Blum, O., Allerman, A.A., Fritz, I.J., Kurtz, S.R., Breiland, W.G., Sieg, R., Geib, K.M., Scott, J.W., and Naone, R.L., Electron. Lett. 36 (2000) p. 1388.CrossRefGoogle Scholar
12.Reichert, H., Steinle, G., and Mederer, F., LaserOpto 33 (2001) p. 70.Google Scholar
13.Jackson, A.W., Naone, R.L., Dalberth, M.J., Smith, J.M., Malone, K.J., Kisker, D.W., Klem, J.F., Choquette, K.D., Serkland, D.K., and Geib, K.M., Electron. Lett. 37 (2001) p. 355.CrossRefGoogle Scholar
14.Unold, H.J., Mahmoud, S.W.Z., Jaeger, R., Kicherer, M., Riedl, M.C., and Ebeling, K.J., IEEE Photon. Technol. Lett. 12 (2000) p. 939.CrossRefGoogle Scholar
15.Naone, R.L., Jackson, A.W., Feld, S.A., Galt, D., Malone, K.J., and Hindi, J.J., in Proc. Lasers and Electro-Optics, CLEO ′01 (Optical Society of America, Washington, DC, 2001) p. 657.Google Scholar
16.Steinle, G., Mederer, F., Kicherer, M., Michalzik, R., Kristen, G., Egorov, A.Y., Reichert, H., Wolf, H.D., and Ebeling, K.J., Electron. Lett. 37 (2001) p. 632.CrossRefGoogle Scholar
17. Honeywell Preliminary Product Data Sheet, HFD8012–101, available online at http://content.honeywell.com:80/vcsel/pdf/HFE80xx-101.pdf (accessed May 2002).Google Scholar
18.Chirovsky, L.M.F., Naone, R.L., Jackson, A.W., Prakash, S.R., Galt, D., Thompson, L.R., Feld, S.A., Wasserbauer, J.G., Dalberth, M.J., Smith, J., Hindi, J.J., and Kisker, D.W., in OSA Trends in Optics and Photonics (TOPS) Vol. 70, Optical Fiber Commun. Conf., Tech. Dig., Postconference Ed. (Optical Society of America, Washington, DC, 2002) p. 149.Google Scholar
19. Rapid Availability Prototyping for Testing Operational Readiness (RAPTOR) Version 5.0, available online at URL http://www.arinc.com/products/raptor/index.html (accessed May 2002).Google Scholar