Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-24T08:24:51.425Z Has data issue: false hasContentIssue false

In situ/operando synchrotron x-ray studies of metal additive manufacturing

Published online by Cambridge University Press:  10 November 2020

Tao Sun
Affiliation:
Department of Materials Science and Engineering, University of Virginia, USA; [email protected]
Wenda Tan
Affiliation:
Department of Mechanical Engineering, The University of Utah, USA; [email protected]
Lianyi Chen
Affiliation:
Department of Mechanical Engineering, University of Wisconsin–Madison, USA; [email protected]
Anthony Rollett
Affiliation:
Department of Materials Science and Engineering, Carnegie Mellon University, USA; [email protected]
Get access

Abstract

Additive manufacturing (AM) comprises a group of transformative technologies that are likely to revolutionize manufacturing. In particular, laser-based metal AM techniques can not only fabricate parts with extreme complexity, but also provide innovative means for designing and processing new metallic systems. However, there are still several technical barriers that constrain metal AM. Overcoming these barriers requires a better understanding of the physics underlying the complex and dynamic laser–metal interaction at the heart of many AM processes. This article briefly describes the state of the art of in situ/operando synchrotron x-ray imaging and diffraction for studying metal AM, mostly the laser powder-bed fusion process. It highlights the immediate impact of operando synchrotron studies on the advancement of AM technologies, and presents future research challenges and opportunities.

Type
Processing Metallic Materials Far from Equilibrium
Copyright
Copyright © The Author(s), 2020, published on behalf of Materials Research Society by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Huang, S.H., Liu, P., Mokasdar, A., Hou, L., Int. J. Adv. Manuf. Technol. 67, 1191 (2013).10.1007/s00170-012-4558-5CrossRefGoogle Scholar
Frazier, W.E., J. Mater. Eng. Perform. 23, 1917 (2014).10.1007/s11665-014-0958-zCrossRefGoogle Scholar
Gu, D.D., Meiners, W., Wissenbach, K., Poprawe, R., Int. Mater. Rev. 57, 133 (2012).10.1179/1743280411Y.0000000014CrossRefGoogle Scholar
King, W.E., Anderson, A.T., Ferencz, R.M., Hodge, N.E., Kamath, C., Khairallah, S.A., Rubenchik, A.M., Appl. Phys. Rev. 2, 041304 (2015).10.1063/1.4937809CrossRefGoogle Scholar
Sames, W.J., List, F.A., Pannala, S., Dehoff, R.R., Babu, S.S., Int. Mater. Rev. 61, 315 (2016).10.1080/09506608.2015.1116649CrossRefGoogle Scholar
DebRoy, T., Wei, H.L., Zuback, J.S., Mukherjee, T., Elmer, J.W., Milewski, J.O., Beese, A.M., Wilson-Heid, A., De, A., Zhang, W., Prog. Mater. Sci. 92, 112 (2018).10.1016/j.pmatsci.2017.10.001CrossRefGoogle Scholar
Aziz, M.J., J. Appl. Phys. 53, 1158 (1982).10.1063/1.329867CrossRefGoogle Scholar
Smith, P.M., Aziz, M.J., Acta Metall. Mater. 42, 3515 (1994).10.1016/0956-7151(94)90483-9CrossRefGoogle Scholar
Kittl, J.A., Sanders, P.G., Aziz, M.J., Brunco, D.P., Thompson, M.O., Acta Mater. 48, 4797 (2000).10.1016/S1359-6454(00)00276-7CrossRefGoogle Scholar
Pinomaa, T., Provatas, N., Acta Mater. 168, 167 (2019).10.1016/j.actamat.2019.02.009CrossRefGoogle Scholar
Wang, Y.M., Voisin, T., McKeown, J.T., Ye, J., Calta, N.P., Li, Z., Zeng, Z., Zhang, Y., Chen, W., Roehling, T.T., Ott, R.T., Santala, M.K., Depond, P.J., Matthews, M.J., Hamza, A.V., Zhu, T., Nat. Mater. 17, 63 (2018).10.1038/nmat5021CrossRefGoogle Scholar
Dovgyy, B., Hooper, P.A., Gourlay, C.M., Piglione, A., Nat. Commun. 11, 1 (2020).Google Scholar
Martin, J.H., Yahata, B.D., Hundley, J.M., Mayer, J.A., Schaedler, T.A., Pollock, T.M., Nature 549, 365 (2017).10.1038/nature23894CrossRefGoogle Scholar
Zhang, D., Qiu, D., Gibson, M.A., Zheng, Y., Fraser, H.L., St. John, D.H., Easton, M.A., Nature 576, 91 (2019).10.1038/s41586-019-1783-1CrossRefGoogle Scholar
Das, S., Bourell, D.L., Babu, S.S., MRS Bull. 41, 729 (2016).10.1557/mrs.2016.217CrossRefGoogle Scholar
Zhao, C., Fezzaa, K., Cunningham, R.W., Wen, H., De Carlo, F., Chen, L., Rollett, A.D., Sun, T., Sci. Rep. 7, 1 (2017).Google Scholar
Parab, N.D., Zhao, C., Cunningham, R., Escano, L.I., Fezzaa, K., Everhart, W., Rollett, A.D., Chen, L., Sun, T., J. Synchrotron Radiat. 25, 1467 (2018).10.1107/S1600577518009554CrossRefGoogle Scholar
Leuders, S., Thöne, M., Riemer, A., Niendorf, T., Tröster, T., Richard, H.A., Maier, H.J., Int. J. Fatigue 48, 300 (2013).10.1016/j.ijfatigue.2012.11.011CrossRefGoogle Scholar
Bobel, A., Hector, L.G., Chelladurai, I., Sachdev, A.K., Brown, T., Poling, W.A., Kubic, R., Gould, B., Zhao, C., Parab, N., Greco, A., Sun, T., Materialia 6, 100306 (2019).10.1016/j.mtla.2019.100306CrossRefGoogle Scholar
Hojjatzadeh, S.M.H., Parab, N.D., Guo, Q., Qu, M., Xiong, L., Zhao, C., Escano, L.I., Fezzaa, K., Everhart, W., Sun, T., Chen, L., Int. J. Mach. Tools Manuf. 153, 103555 (2020).10.1016/j.ijmachtools.2020.103555CrossRefGoogle Scholar
Hojjatzadeh, S.M.H., Parab, N.D., Yan, W., Guo, Q., Xiong, L., Zhao, C., Qu, M., Escano, L.I., Xiao, X., Fezzaa, K., Everhart, W., Sun, T., Chen, L., Nat. Commun. 10, 1 (2019).Google Scholar
Cunningham, R., Zhao, C., Parab, N., Kantzos, C., Pauza, J., Fezzaa, K., Sun, T., Rollett, A.D., Science 80, 363, 849 (2019).10.1126/science.aav4687CrossRefGoogle Scholar
Martin, A.A., Calta, N.P., Hammons, J.A., Khairallah, S.A., Nielsen, M.H., Shuttlesworth, R.M., Sinclair, N., Matthews, M.J., Jeffries, J.R., Willey, T.M., Lee, J.R.I., Mater. Today Adv. 1, 100002 (2019).10.1016/j.mtadv.2019.01.001CrossRefGoogle Scholar
Khairallah, S.A., Martin, A.A., Lee, J.R.I., Guss, G., Calta, N.P., Hammons, J.A., Nielsen, M.H., Chaput, K., Schwalbach, E., Shah, M.N., Chapman, M.G., Willey, T.M., Rubenchik, A.M., Anderson, A.T., Morris Wang, Y., Matthews, M.J., King, W.E., Science 80, (368), 660 (2020).Google Scholar
Martin, A.A., Calta, N.P., Khairallah, S.A., Wang, J., Depond, P.J., Fong, A.Y., Thampy, V., Guss, G.M., Kiss, A.M., Stone, K.H., Tassone, C.J., Nelson Weker, J., Toney, M.F., van Buuren, T., Matthews, M.J., Nat. Commun. 10, 1 (2019).Google Scholar
Leung, C.L.A., Marussi, S., Towrie, M., del Val Garcia, J., Atwood, R.C., Bodey, A.J., Jones, J.R., Withers, P.J., Lee, P.D., Addit. Manuf. 24, 647 (2018).Google Scholar
Chiang, P.-J., Jiang, R., Cunningham, R., Parab, N., Zhao, C., Fezzaa, K., Sun, T., Rollett, A.D., in Advanced Real Time Imaging II, The Minerals, Metals & Materials Series, Nakano, J., Pistorius, P.C., Tamerler, C., Yasuda, H., Zhang, Z., Dogan, N., Wang, W., Saito, N., Webler, B., Eds. (Springer, Cham, Switzerland, 2019), pp. 7785.10.1007/978-3-030-06143-2_8CrossRefGoogle Scholar
Kouraytem, N., Li, X., Cunningham, R., Zhao, C., Parab, N., Sun, T., Rollett, A.D., Spear, A.D., Tan, W., Phys. Rev. Appl. 11, 1 (2019).10.1103/PhysRevApplied.11.064054CrossRefGoogle Scholar
Guo, Q., Zhao, C., Qu, M., Xiong, L., Hojjatzadeh, S.M.H., Escano, L.I., Parab, N.D., Fezzaa, K., Sun, T., Chen, L., Addit. Manuf. 31, 100939 (2020).Google Scholar
Zhao, C., Guo, Q., Li, X., Parab, N., Fezzaa, K., Tan, W., Chen, L., Sun, T., Phys. Rev. X 9, 21052 (2019).Google Scholar
Li, X., Zhao, C., Sun, T., Tan, W., Addit. Manuf. 101362, (2020).Google Scholar
Clarke, A.J., Tourret, D., Song, Y., Imhoff, S.D., Gibbs, P.J., Gibbs, J.W., Fezzaa, K., Karma, A., Acta Mater. 129, 203 (2017).10.1016/j.actamat.2017.02.047CrossRefGoogle Scholar
Reinhart, G., Gandin, C.A., Mangelinck-Noël, N., Nguyen-Thi, H., Billia, B., Baruchel, J., IOP Conf. Ser. Mater. Sci. Eng. 33, 0 (2012).10.1088/1757-899X/33/1/012077CrossRefGoogle Scholar
Gould, B., Wolff, S., Parab, N., Zhao, C., Lorenzo-Martin, C., Fezzaa, K., Greco, A., Sun, T., JOM (2020), https://doi.org/10.1007/s11837-020-04291-5.Google Scholar
Paulson, N.H., Gould, B., Wolff, S.J., Stan, M., Greco, A.C., Addit. Manuf. 34 (2020).Google Scholar
Shevchik, S., Le-Quang, T., Meylan, B., Farahani, F.V., Olbinado, M.P., Rack, A., Masinelli, G., Leinenbach, C., Wasmer, K., Sci. Rep. 10, 3389 (2020).10.1038/s41598-020-60294-xCrossRefGoogle Scholar
Wolff, S.J., Wu, H., Parab, N., Zhao, C., Ehmann, K.F., Sun, T., Cao, J., Sci. Rep. 9, 1 (2019).Google Scholar
Webster, S., Wolff, S., Bennett, J., Sun, T., Cao, J., Ehmann, K., Microsc. Microanal. 25, 2556 (2019).10.1017/S1431927619013515CrossRefGoogle Scholar
Parab, N.D., Barnes, J.E., Zhao, C., Cunningham, R.W., Fezzaa, K., Rollett, A.D., Sun, T., Sci. Rep. 9, 1 (2019).Google Scholar
Sun, T., Fezzaa, K., J. Synchrotron Radiat. 23, 1046 (2016).10.1107/S1600577516005804CrossRefGoogle Scholar
Glerum, J., Sun, T., Kenel, C., Dunand, D.C., Addit. Manuf. 36, 101461 (2020).Google Scholar
Calta, N.P., Wang, J., Kiss, A.M., Martin, A.A., Depond, P.J., Guss, G.M., Thampy, V., Fong, A.Y., Weker, J.N., Stone, K.H., Tassone, C.J., Kramer, M.J., Toney, M.F., Van Buuren, A., Matthews, M.J., Rev. Sci. Instrum. 89 (2018).10.1063/1.5017236CrossRefGoogle Scholar
Kiss, A.M., Fong, A.Y., Calta, N.P., Thampy, V., Martin, A.A., Depond, P.J., Wang, J., Matthews, M.J., Ott, R.T., Tassone, C.J., Stone, K.H., Kramer, M.J., van Buuren, A., Toney, M.F., Nelson Weker, J., Adv. Eng. Mater. 21, 1 (2019).10.1002/adem.201900455CrossRefGoogle Scholar
Thampy, V., Fong, A.Y., Calta, N.P., Wang, J., Martin, A.A., Depond, P.J., Kiss, A.M., Guss, G., Xing, Q., Ott, R.T., van Buuren, A., Toney, M.F., Weker, J.N., Kramer, M.J., Matthews, M.J., Tassone, C.J., Stone, K.H., Sci. Rep. 10, 1 (2020).10.1038/s41598-020-58598-zCrossRefGoogle Scholar
Leung, C.L.A., Marussi, S., Atwood, R.C., Towrie, M., Withers, P.J., Lee, P.D., Nat. Commun. 9, 1 (2018).10.1038/s41467-018-03734-7CrossRefGoogle Scholar
Leung, C.L.A., Marussi, S., Towrie, M., Atwood, R.C., Withers, P.J., Lee, P.D., Acta Mater. 166, 294 (2019).10.1016/j.actamat.2018.12.027CrossRefGoogle Scholar
Chen, Y., Clark, S.J., Leung, C.L.A., Sinclair, L., Marussi, S., Olbinado, M.P., Boller, E., Rack, A., Todd, I., Lee, P.D., Appl. Mater. Today 20, 100650 (2020).Google Scholar
Hocine, S., Van Petegem, S., Frommherz, U., Tinti, G., Casati, N., Grolimund, D., Van Swygenhoven, H., Addit. Manuf. 101194 (2020).Google Scholar
Hocine, S., Van Swygenhoven, H., Van Petegem, S., Chang, C.S.T., Maimaitiyili, T., Tinti, G., Ferreira Sanchez, D., Grolimund, D., Casati, N., Mater. Today 34, 30 (2019).10.1016/j.mattod.2019.10.001CrossRefGoogle Scholar
Kenel, C., Grolimund, D., Li, X., Panepucci, E., Samson, V.A., Sanchez, D.F., Marone, F., Leinenbach, C., Sci. Rep. 7, 1 (2017).10.1038/s41598-017-16760-0CrossRefGoogle Scholar
Filik, J., Ashton, A.W., Chang, P.C.Y., Chater, P.A., Day, S.J., Drakopoulos, M., Gerring, M.W., Hart, M.L., Magdysyuk, O. V., Michalik, S., Smith, A., Tang, C.C., Terrill, N.J., Wharmby, M.T., Wilhelm, H., J. Appl. Crystallogr. 50, 959 (2017).10.1107/S1600576717004708CrossRefGoogle Scholar