Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-12T13:06:42.946Z Has data issue: false hasContentIssue false

In situ FIB-SEM characterization and manipulation methods

Published online by Cambridge University Press:  09 April 2014

Nicholas Antoniou
Affiliation:
Center for Nanoscale Systems, Harvard University; [email protected]
Konrad Rykaczewski
Affiliation:
School for Engineering of Matter, Transport, and Energy, Arizona State University; [email protected]
Michael D. Uchic
Affiliation:
Air Force Research Laboratory, Wright Patterson AFB; [email protected]
Get access

Abstract

This article reviews recent developments and applications of two beam systems (focused ion beam [FIB] and scanning electron microscope [SEM]) for in situ characterization and manipulation of material at the micro- and nanoscale. In these applications, the sample may be manipulated, ion milled, mechanically or electrically excited, and its temperature varied from above room temperature to cryogenic levels. FIB-SEM instruments offer new opportunities for in situ characterization by enabling localized exposure of surface layers within the high vacuum microscope chamber environment (especially in conjunction with cryogenic cooling of the bulk sample), through experiments that require either highly accurate material removal or localized material addition through beam-induced gas deposition, and by using micro- and nano-manipulation technologies for probing or positioning. This article describes the current state of the art of this experimental methodology and provides case studies in the areas of cryogenic, electrical, and mechanical characterization.

Type
Research Article
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Melngailis, J., Musil, C.R., Stevens, E.H., Utlaut, M., Kellogg, E.M., Post, R.T., Geis, M.W., Mountain, R.W., J. Vac. Sci. Technol. B 4, 176 (1986).Google Scholar
Tao, T., Wilkinson, W., Melngailis, J., J. Vac. Sci. Technol. B 9, 162 (1991).Google Scholar
Gianuzzi, L.A., Stevie, F.A., Introduction to Focused Ion Beams: Instrumentation, Theory, Techniques and Practice (Springer, NY, 2005).Google Scholar
Utke, I., Hoffmann, P., Melngailis, J., J. Vac. Sci. Technol. B 26, 1197 (2008).Google Scholar
Kleindiek Nanotechnik, SEM-Compatible Glue ; http://www.nanotechnik.com/semglu.html.Google Scholar
Antoniou, N., Graham, A., Hartfield, C., Amador, G., 38th International Symposium for Testing and Failure Analysis (Phoenix, AZ, 2012), p. 399.Google Scholar
Tuck, K., Ellis, M., Geisberger, A., Skidmore, G., Foster, P., Microsc. Microanal. 10 (Suppl. 2), 1144 (2004).Google Scholar
Antoniou, N., Electron. Device Fail. Anal. 15, 12 (2013).Google Scholar
Uchic, M.D., Dimiduk, D.M., Florando, J.N., Nix, W.D., “Exploring Specimen Size Effects in Plastic Deformation of Ni3(Al, Ta),” in Mater. Res. Soc. Symp. Proc. 753, Mills, M.J., Eggeler, G., George, E.P., Inui, H., Eds. (Materials Research Society, Warrendale, PA, 2002).Google Scholar
Uchic, M.D., Dimiduk, D.M., Mater. Sci. Eng. A 400401, 268 (2005).Google Scholar
Volkert, C., Minor, A., MRS Bull. 32, 389 (2007).Google Scholar
Gianola, D.S., Sedlmayr, A., Mönig, R., Volkert, C.A., Major, R.C., Cyrankowski, E., Asif, S.A.S., Warren, O.L., Kraft, O., Rev. Sci. Instrum. 82 (6), 063901 (2011).Google Scholar
Shade, P., Wheeler, R., Choi, Y., Uchic, M., Dimiduk, D., Fraser, H., Acta Mater. 57, 4580 (2009).Google Scholar
Motz, C., Weygand, D., Senger, J., Gumbsch, P., Acta Mater. 56, 1942 (2008).Google Scholar
Kim, J.-Y., Greer, J.R., Acta Mater. 57, 5245 (2009).Google Scholar
Niederberger, C., Mook, W.M., Maeder, X., Michler, J., Mater. Sci. Eng. A 527, 4306 (2010).Google Scholar
Kiener, D., Guruprasad, P.J., Keralavarma, S.M., Dehm, G., Benzerga, A.A., Acta Mater. 59, 3825 (2011).Google Scholar
Norfleet, D.M., Dimiduk, D.M., Polasik, S.J., Uchic, M.D., Mills, M.J., Acta Mater. 56, 2988 (2008).Google Scholar
Shade, P., Groeber, M., Schuren, J., Uchic, M., Integr. Mater. Manuf. Innov. 2, 5 (2013).Google Scholar
Uchic, M.D., Holzer, L., Inkson, B.J., Principe, E.L., Munroe, P., MRS Bull. 32, 408 (2007).Google Scholar
Shade, P.A., Kim, S.-L., Wheeler, R., Uchic, M.D., Rev. Sci. Instrum. 83, 053903 (2012).CrossRefGoogle Scholar
Heyer, J.K., Brinckmann, S., Pfetzing-Micklich, J., Eggeler, G., Acta Mater. 62, 225 (2014).Google Scholar
Wheeler, R., Shade, P., Uchic, M., JOM 64, 58 (2012).CrossRefGoogle Scholar
Turner, T.J., Shade, P.A., Schuren, J.C., Groeber, M.A., Model. and Simul. Mater. Sci. Eng. 21, 015002 (2013).CrossRefGoogle Scholar
Song, Z.G., Loh, S.K., Zheng, X.H., Neo, S.P., Oh, C.K., 32nd International Symposium for Testing and Failure Analysis (Austin, TX, 2006), p. 204.Google Scholar
Goldstein, J., Newbury, D.E., Joy, D.C., Lyman, C.E., Echlin, P., Lifshin, E., Sawyer, L., Michael, J.R., Scanning Electron Microscopy and X-ray Microanalysis, 3rd ed. (Springer, New York, 2003).Google Scholar
Rosenkranz, R., Werner, W., 33rd International Symposium for Testing and Failure Analysis (2007), p. 331.Google Scholar
Leonard, F., Talin, A.A., Nat. Nanotechnol. 6, 773 (2011).Google Scholar
Ruzmetov, D., Oleshko, V.P., Haney, P.M., Lezec, H.J., Karki, K., Baloch, K.H., Agrawal, A.K., Davydov, A.V., Krylyuk, S., Liu, Y., Huang, J., Tanase, M., Cumings, J., Talin, A.A., Nano Lett. 12, 505 (2011).Google Scholar
Unocic, R., Adamczyk, L., Dudney, N., Alsem, D., Salmon, N., More, K., Microsc. Microanal. 17, 1564 (2011).Google Scholar
Gu, M., Parent, L.R., Mehdi, B.L., Unocic, R.R., McDowell, M.T., Sacci, R.L., Xu, W., Connell, J.G., Xu, P., Abellan, P., Chen, X., Zhang, Y., Perea, D.E., Evans, J.E., Lauhon, L.J., Zhang, J.-G., Liu, J., Browning, N.D., Cui, Y., Arslan, I., Wang, C.-M., Nano Lett. 13, 6106 (2013).Google Scholar
Miller, D.J., Proff, C., Wen, J.G., Abraham, D.P., Bareño, J., Adv. Energy Mater. 3, 1098 (2013).Google Scholar
Echlin, P., Low-Temperature Microscopy and Analysis (Springer, New York, 1992).Google Scholar
Dubochet, J., J. Microsc. 245, 221 (2012).Google Scholar
Heymann, J.A., Hayles, M., Gestmann, I., Giannuzzi, L.A., Lich, B., Subramaniam, S., J. Struct. Biol. 155, 63 (2006).Google Scholar
Marko, M., Hsieh, C., Moberlychan, W., Mannella, C.A., Frank, J., J. Microsc. 222, 42 (2006).Google Scholar
Marko, M., Hsieh, C., Schalek, R., Frank, J., Mannella, C., Nat. Methods 4, 215 (2007).Google Scholar
Bassim, N.D., De Gregorio, B.T., Kilcoyne, A.L.D., Scott, K., Chou, T., Wirick, S., Cody, G., Stroud, R.M., J. Microsc. 245, 288 (2012).Google Scholar
Bailey, R.J., Geurts, R., Stokes, D.J., de Jong, F., Barber, A.H., Micron 50, 51 (2013).Google Scholar
Wirth, R., Chem. Geol. 261, 217 (2009).Google Scholar
Felts, R.L., Narayan, K., Estes, J.D., Shi, D., Trubey, C.M., Fu, J., Hartnell, L.M., Ruthel, G.T., Schneider, D.K., Nagashima, K., Proc. Natl. Acad. Sci. U.S.A. 107, 13336 (2010).Google Scholar
Gestmann, I., Hayles, M., Shi, D., Kumar, G., Giannuzzi, L.A., Lich, B., Subramaniam, S., Microsc. Microanal. 10, 1124 (2004).Google Scholar
Giannuzzi, L.A., Prentitzer, B.I., Drown-MacDonald, J.L., Shofner, T.L., Brown, S.R., Irwin, R.B., Stevie, F.A., J. Process Anal. Chem. 4, 162 (1999).Google Scholar
Bushby, A.J., P’ng, K.M., Young, R.D., Pinali, C., Knupp, C., Quantock, A.J., Nat. Protoc. 6, 845 (2011).Google Scholar
Wang, K., Strunk, K., Zhao, G., Gray, J.L., Zhang, P., J. Struct. Biol. 2, 318, (2012).Google Scholar
Winter, D.A.M.D., Schneijdenberg, C.T.W.M., Lebbink, M.N., Lich, B., Verkleij, A.J., Drury, M.R., Humbel, B.M., J. Microsc. 233, 372 (2009).Google Scholar
Schertel, A., Snaidero, N., Han, H.-M., Ruhwedel, T., Laue, M., Grabenbauer, M., Möbius, W., J. Struct. Biol. 2, 355 (2012).Google Scholar
Villa, E., Schaffer, M., Plitzko, J.M., Baumeister, W., Curr. Opin. Struct. Biol. 23, 771 (2013).Google Scholar
Lamers, E., Walboomers, X.F., Domanski, M., McKerr, G., O’Hagan, B.M., Barnes, C.A., Peto, L., Luttge, R., Winnubst, L.A., Gardeniers, H.J., Tissue Eng. Part C: Methods 17, 1 (2010).Google Scholar
Edwards, H.K., Fay, M.W., Anderson, S.I., Scotchford, C.A., Grant, D.M., Brown, P.D., J. Microsc. 234, 16 (2009).Google Scholar
Lubelli, B., de Winter, D.A.M., Post, J.A., van Hees, R.P.J., Drury, M.R., App. Clay Sci. 8081, 358 (2013).Google Scholar
Desbois, G., Urai, J.L., Burkhardt, C., Drury, M.R., Hayles, M., Humbel, B., Geofluids 8, 60 (2008).Google Scholar
Dudkiewicz, A., Tiede, K., Loeschner, K., Jensen, L.H.S., Jensen, E., Wierzbicki, R., Boxall, A.B.A., Molhave, K., Trends Anal. Chem. 30, 28 (2011).Google Scholar
Scott, K., Microsc. Microanal. 17 (Suppl. 2), 668 (2011).Google Scholar
Rykaczewski, K., Landin, T., Walker, L.A., Scott, J.H.J., Varanasi, K.K., ACS Nano 6, 9326 (2012).Google Scholar
Rykaczewski, K., Anand, S., Subramanyam, S.B., Varanasi, K.K., Langmuir 29, 5230 (2013).Google Scholar
Subramanyam, S. Bengaluru, Rykaczewski, K., Varanasi, K.K., Langmuir 29, 13414 (2013).Google Scholar
Hayles, M.F., Stokes, D.J., Phifer, D., Findlay, K.C., J. Microsc. 226, 263 (2007).Google Scholar
Rigort, A., Bäuerlein, F.J.B., Villa, E., Eibauer, M., Laugks, T., Baumeister, W., Plitzko, J.M., Proc. Natl. Acad. Sci. U.S.A. 109 (12), 4449 (2012).Google Scholar
Rubino, S., Akhtar, S., Melin, P., Searle, A., Spellward, P., Leifer, K., J. Struct. Biol. 180, 572 (2012).Google Scholar
Hayles, M.F., Matthijs de Winter, D.A., Schneijdenberg, C.T.W.M., Meeldijk, J.D., Luecken, U., Persoon, H., de Water, J., de Jong, F., Humbel, B.M., Verkleij, A.J., J. Struct. Biol. 172, 180 (2010).Google Scholar
Bresin, M., Toth, M., Dunn, K.A., Nanotechnology. 24, 035301 (2013).Google Scholar
Rykaczewski, K., Scott, J.J., Microsc. Microanal. 18 (Suppl. 2), 642 (2012).Google Scholar