Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-13T00:55:17.418Z Has data issue: false hasContentIssue false

Impact of in situ nanomechanics on physical metallurgy

Published online by Cambridge University Press:  11 June 2019

J. Kacher
Affiliation:
Georgia Institute of Technlogy, USA; [email protected]
C. Kirchlechner
Affiliation:
Max-Planck-Institut für Eisenforschung GmbH, Germany; [email protected]
J. Michler
Affiliation:
Laboratory for Mechanics of Materials and Nanostructures, Empa—Swiss Federal Laboratories for Materials Science and Technology, Switzerland; [email protected]
E. Polatidis
Affiliation:
Paul Scherrer Institute, Switzerland; [email protected]
R. Schwaiger
Affiliation:
Institute for Applied Materials, Karlsruhe Institute of Technology (KIT), Germany; [email protected]
H. Van Swygenhoven
Affiliation:
École Polytechnique Fédérale de Lausanne, and Paul Scherrer Institute, Switzerland; [email protected]
M. Taheri
Affiliation:
Department of Materials Science and Engineering, Drexel University, USA; [email protected]
M. Legros
Affiliation:
Centre d’Elaboration des Matériaux et d’Etudes Structurales, Centre National de la Recherche Scientifique, France; [email protected]
Get access

Abstract

The mechanical response of modern alloys results from a complex interplay between existing microstructure and its evolution with time under stress. To unravel these processes, in situ approaches intrinsically have a critical advantage to explore the basic mechanisms involving dislocations, grain boundaries (GBs), and their interactions in real time. In this article, we discuss recent findings using in situ nanomechanical testing techniques and refined crystallographic analysis tools. Advancements in in situ nanomechanics not only include multiaxial loading conditions, which bring us closer to real-world applications, but also high strain-rate testing, which is critical to compare experiments and simulations. In particular, unraveling the details of GB-based mechanisms and related microstructural changes will facilitate significant breakthroughs in our understanding of the behavior of materials on macroscopic length scales.

Type
Advances in In situ Nanomechanical Testing
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Vetterick, G., Leff, A.C., Marshall, M., Baldwin, J.K., Misra, A., Hattar, K., Taheri, M.L., Mater. Sci. Eng. A 709, 339 (2018).CrossRefGoogle Scholar
Barr, C.M., Thomas, S., Hart, J.L., Harlow, W., Anber, E., Taheri, M.L., npj Mater. Degrad. 2 (1), 14 (2018).CrossRefGoogle Scholar
Vetterick, G.A., Gruber, J., Suri, P.K., Baldwin, J.K., Kirk, M.A., Baldo, P., Sci. Rep. 7, 12275 (2017).CrossRefGoogle Scholar
Miracle, D.B., Senkov, O.N., Acta Mater . 122, 448 (2017).CrossRefGoogle Scholar
Ovid’ko, I.A., Valiev, R.Z., Zhu, Y.T., Prog. Mater. Sci. 94, 462 (2018), doi:10.1016/j.pmatsci.2018.02.002.CrossRefGoogle Scholar
Hu, J., Shi, Y.N., Sauvage, X., Sha, G., Lu, K., Science 355, 1292 (2017).CrossRefGoogle Scholar
Leff, A.C., Taheri, M.L., Scr. Mater. 121, 14 (2016).CrossRefGoogle Scholar
Messerschmidt, U., Dislocation Dynamics during Plastic Deformation (Springer, Berlin, Germany, 2010).CrossRefGoogle Scholar
Legros, M., C. R. Phys . 15, 224 (2014).CrossRefGoogle Scholar
Yu, Q., Legros, M., Minor, A.M., MRS Bull . 40, 62 (2015).CrossRefGoogle Scholar
Legros, M., Gianola, D.S., Motz, C., MRS Bull . 35, 354 (2011).CrossRefGoogle Scholar
Dehm, G., Jaya, B.N., Raghavan, R., Kirchlechner, C., Acta Mater . 142, 248 (2018).CrossRefGoogle Scholar
Kang, W., Merrill, M., Wheeler, J.M., Nanoscale 9, 2666 (2017).CrossRefGoogle Scholar
Ramachandramoorthy, R., Milan, M., Lin, Z., Trolier-McKinstry, S., Corigliano, A., Espinosa, H., Extreme Mech. Lett. 20, 14 (2018).CrossRefGoogle Scholar
Ramachandramoorthy, R., Gao, W., Bernal, R., Espinosa, H., Nano Lett . 16, 255 (2015).CrossRefGoogle Scholar
Malyar, N.V., Micha, J.S., Dehm, G., Kirchlechner, C., Acta Mater . 129, 91 (2017).CrossRefGoogle Scholar
Kacher, J., Eftink, B.P., Cui, B., Robertson, I.M., Curr. Opin. Solid State Mater. Sci. 18, 227 (2014).CrossRefGoogle Scholar
Chassagne, M., Legros, M., Rodney, D., Acta Mater . 59, 1456 (2011).CrossRefGoogle Scholar
Legros, M., Gianola, S.D., Hemker, K.J., Acta Mater . 56, 3380 (2008).CrossRefGoogle Scholar
Rupert, T.J., Gianola, D.S., Gan, Y., Hemker, K.J., Science 326, 1686 (2009).CrossRefGoogle Scholar
Zhu, Q., Cao, G., Wang, J., Deng, C., Li, J., Zhang, Z., Mao, S.X., Nat. Commun. 10, 156 (2019).CrossRefGoogle Scholar
Leff, A.C., Weinberger, C.R., Taheri, M.L., Ultramicroscopy 153, 9 (2015).CrossRefGoogle Scholar
Britton, T.B., Wilkinson, A.J., Acta Mater . 60, 5773 (2012).CrossRefGoogle Scholar
Nye, A., Leff, A.C., Barr, C.M., Taheri, M.L., Scr. Mater. 146, 308 (2018).CrossRefGoogle Scholar
Ghamarian, I., Liu, Y., Samimi, P., Collins, P.C., Acta Mater . 79, 203 (2014).CrossRefGoogle Scholar
Kamaya, M., Wilkinson, A.J., Materialia, J.T.A., Acta Mater . 54, 539 (2006).CrossRefGoogle Scholar
Ruggles, T.J., Fullwood, D.T., Ultramicroscopy 133, 8 (2013).CrossRefGoogle Scholar
Ram, F., Wright, S., Singh, S., De Graef, M., Ultramicroscopy 181, 17 (2017).CrossRefGoogle Scholar
Cahn, J.W., Taylor, J.E., Acta Mater . 52, 4887 (2004).CrossRefGoogle Scholar
Mompiou, F., Legros, M., Caillard, D., Mater. Res. Soc. Symp. Proc . 1086, (2008), doi:10.1557/PROC-1086-U09-04.CrossRefGoogle Scholar
Rajabzadeh, A., Mompiou, F., Legros, M., Combe, N., Phys. Rev. Lett. 110, 265507 (2013).CrossRefGoogle Scholar
Rottmann, P.F., Hemker, K.J., Acta Mater . 140, 46 (2017).CrossRefGoogle Scholar
Molodov, K.D., Molodov, D.A., Acta Mater . 153, 336 (2018).CrossRefGoogle Scholar
Han, J., Thomas, S.L., Srolovitz, D.J., Prog. Mater. Sci. 98, 386 (2018).CrossRefGoogle Scholar
Hirth, J.P., Pond, R.C., Acta Mater . 44, 4749 (1996).CrossRefGoogle Scholar
Mompiou, F., Legros, M., Scr. Mater. 99, 5 (2015).CrossRefGoogle Scholar
Imrich, P.J., Kirchlechner, C., Motz, C., Dehm, G., Acta Mater . 73, 240 (2014).CrossRefGoogle Scholar
Liebig, J.P., Krauß, S., Göken, M., Merle, B., Acta Mater . 154, 261 (2018).CrossRefGoogle Scholar
Maass, R., Van Petegem, S., Van Swygenhoven, H., Derlet, P.M., Volkert, C.A., Grolimund, D., Phys. Rev. Lett. 99, 145505 EP– (2007).CrossRefGoogle Scholar
Malyar, N.V., Dehm, G., Kirchlechner, C., Scr. Mater. 138, 88 (2017).CrossRefGoogle Scholar
Caillard, D., Martin, J.L., J. Phys. (France) 50, 2455 (1989).CrossRefGoogle Scholar
Malyar, N.V., Grabowski, B., Dehm, G., Kirchlechner, C., Acta Mater . 161, 412 (2018).CrossRefGoogle Scholar
Li, N., Wang, J., Misra, A., Zhang, X., Huang, J.Y., Hirth, J.P., Acta Mater . 59, 5989 (2011).CrossRefGoogle Scholar
Kacher, J., Robertson, I.M., Acta Mater . 60, 6657 (2012).CrossRefGoogle Scholar
Kacher, J., Robertson, I.M., Philos. Mag. 94, 814 (2014).CrossRefGoogle Scholar
Jia, D., Ramesh, K.T., Exp. Mech. 44, 445 (2004).CrossRefGoogle Scholar
Lee, J.-H., Veysset, D., Singer, J.P., Retsch, M., Saini, G., Pezeril, T., Nelson, K.A., Thomas, E.L., Nat. Commun . 3, 1164 (2012).CrossRefGoogle Scholar
Jennings, A.T., Li, J., Greer, J.R., Acta Mater . 59, 5627 (2011).CrossRefGoogle Scholar
Guillonneau, G., Mieszala, M., Wehrs, J., Schwiedrzik, J., Grop, S., Frey, D., Philippe, L., Breguet, J.-M., Michler, J., Wheeler, J.M., Mater. Des. 148, 39 (2018).CrossRefGoogle Scholar
Schamel, M., Wheeler, J.M., Niederberger, C., Michler, J., Sologubenko, A., Spolenak, R., Philos. Mag. 96, 3479 (2016).CrossRefGoogle Scholar
Barnoush, A., Hosemann, P., Molina-Aldareguia, J., Wheeler, J.M., MRS. Bull. 44 (6), 471 (2019).Google Scholar
Choi, W.S., Sandlöbes, S., Malyar, N.V., Kirchlechner, C., Korte-Kerzel, S., Dehm, G., De Cooman, B.C., Raabe, D., Acta Mater . 132, 162 (2017).CrossRefGoogle Scholar
Choi, W.S., Sandlöbes, S., Malyar, N.V., Kirchlechner, C., Korte-Kerzel, S., Dehm, G., Choi, P-P., Raabe, D., Scr. Mater. 156, 27 (2018).CrossRefGoogle Scholar
Mohanty, G., Wheeler, J.M., Raghavan, R., Wehrs, J., Hasegawa, M., Mischler, S., Philippe, L., Michler, J., Philos. Mag. 95, 1878 (2014).CrossRefGoogle Scholar
Schwaiger, R., Moser, B., Dao, M., Chollacoop, N., Suresh, S., Acta Mater . 51, 5159 (2003).CrossRefGoogle Scholar
Di Gioacchino, F., Quinta da Fonseca, J., Int. J. Plast. 74, 92 (2015).CrossRefGoogle Scholar
Zhang, Z., Lunt, D., Abdolvand, H., Wilkinson, A.J., Preuss, M., Dunne, F.P.E., Int. J. Plast. 108, 88 (2018).CrossRefGoogle Scholar
Chen, Z., Daly, S.H., Exp. Mech. 57, 115 (2016).CrossRefGoogle Scholar
Van Petegem, S., Guitton, A., Dupraz, M., Bollhalder, A., Sofinowski, K., Upadhyay, M.V., Exp. Mech. 57, 569 (2017).CrossRefGoogle Scholar
Polatidis, E., Hsu, W.N., Smid, M., Van Swygenhoven, H., Exp. Mech. 59, 309 (2019).CrossRefGoogle Scholar
Zecevic, M., Upadhyay, M.V., Polatidis, E., Panzner, T., Van Swygenhoven, H., Knezevic, M., Acta Mater . 166, 386 (2019).CrossRefGoogle Scholar