Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-05T08:06:53.278Z Has data issue: false hasContentIssue false

The Hydrogen Fuel Alternative

Published online by Cambridge University Press:  31 January 2011

G.W. Crabtree
Affiliation:
Argonne National Laboratory, USA
M.S. Dresselhaus
Affiliation:
Massachusetts Institute of Technology, USA

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The cleanliness of hydrogen and the efficiency of fuel cells taken together offer an appealing alternative to fossil fuels. Implementing hydrogen-powered fuel cells on a significant scale, however, requires major advances in hydrogen production, storage, and use. Splitting water renewably offers the most plentiful and climate-friendly source of hydrogen and can be achieved through electrolytic, photochemical, or biological means. Whereas presently available hydride compounds cannot easily satisfy the competing requirements for on-board storage of hydrogen for transportation, nanoscience offers promising new approaches to this challenge. Fuel cells offer potentially efficient production of electricity for transportation and grid distribution, if cost and performance challenges of components can be overcome. Hydrogen offers a variety of routes for achieving a transition to a mix of renewable fuels.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

References

1.Dresselhaus, M.S., Crabtree, G.W., Buchanan, M.V., Eds., Basic Research Needs for the Hydrogen Economy (Offce of Basic Energy Sciences, Department of Energy, Washington, DC, 2003; www.sc.doe.gov/bes/reports/Abstract.html#NHE) (accessed January 2008).Google Scholar
2.The Hydrogen Economy: Opportunities, Costs, Barriers, and R&D Needs (The National Academy Press, Washington, DC, 2004; http://books.nap.edu/catalog.php?record_id=10922) (accessed January 2008).Google Scholar
3.Crabtree, G.W., Dresselhaus, M.S., Buchanan, M.V., Phys. Today 57(12), 39 (2004).Google Scholar
4.Cohen, R.L., Wernick, J.H., Science 214, 1081 (1981).CrossRefGoogle Scholar
5.International Energy Outlook 2006, U.S. Energy Information Administration; www.eia.doe.gov/oiaf/archive/ieo06/index.html (accessed January 2008).Google Scholar
6.Ivy, J., “Summary of Electrolytic Hydrogen Production” (NREL/MP-560– 35948, 2004; www.eere.energy.gov/hydrogenandfuelcells/hydrogen_publications.html) (accessed January 2008).Google Scholar
7.Jacobson, M.Z., Colella, W.G., Golden, D.M., Science 308, 1901 (2007).CrossRefGoogle Scholar
8.Esper, B., Badura, A., Rögner, M., Trends Plant Sci. 11, 543 (2006).CrossRefGoogle Scholar
9.Ferreira, K.N., Iverson, T.M., Maghlaoui, K., Barber, J., Iwata, S., Science 303, 1831 (2004).CrossRefGoogle Scholar
10.Tard, C., Liu, X., Ibrahim, S.K., Bruschi, M., De Gioia, L., Davies, S.C., Yang, X., Wang, L.-S., Sawers, G., Pickett, C.J., Nature 433, 610 (2005).CrossRefGoogle Scholar
11.Ogo, S., Kabe, R., Uehara, K., Kure, B., Nishimura, T., Menon, S.C., Harada, R., Fukuzumi, S., Higuchi, Y., Ohhara, T., Tamada, T., Kuroki, R., Dinuclear, A., Science 316, 585 (2007).Google Scholar
12.Kamat, P.V., J. Phys. Chem. C 111, 2834 (2007).CrossRefGoogle Scholar
13.Yu, P., Zhu, K., Norman, A.G., Ferrere, S., Frank, A.J., Nozik, A.J., J. Phys. Chem. B 110, 25451 (2006).CrossRefGoogle Scholar
14.Park, J.H., Kim, S., Bard, A.J., Nano Lett. 6, 24 (2006).CrossRefGoogle Scholar
15.Matsuoka, M., Kitano, M., Takeuchi, M., Koichiro, , Anpo, M., Thomas, J.M., Catal. Today 122, 51 (2007).Google Scholar
16.Xu, X., Xiao, Y., Qiao, C., Energy Fuels 21, 1688 (2007).CrossRefGoogle Scholar
17.Chiesa, P., Consonni, S., Kreutz, T., Williams, R., Int. J. Hydrogen Energy 30, 747 (2005).CrossRefGoogle Scholar
18.Perkins, C., Weimer, A.W., Int. J. Hydrogen Energy 29, 1587 (2004).Google Scholar
19.Nenoff, T.M., Spontak, R.J., Aberg, C.M., MRS Bull. 31, 705 (2006).CrossRefGoogle Scholar
20.Satyapal, S., Petrovic, J., Read, C., Thomas, G., Ordaza, G., Catal. Today 120, 246 (2007).CrossRefGoogle Scholar
21.Geerlings, P., De Proft, F., Langenaeker, W., Chem. Rev. 103, 1793 (2003).CrossRefGoogle Scholar
22.Kiran, B., Kandalama, A.K., Jena, P., J. Chem. Phys. 124, 224703 (2006).Google Scholar
23.Alapati, S.V., Johnson, J.K., Sholl, D.S., Phys. Chem. Chem. Phys. 9, 1438 (2007).CrossRefGoogle Scholar
24.Greeley, J., Mavrikakis, M., Catal. Today 111, 52 (2006).CrossRefGoogle Scholar
25.Grochala, W., Edwards, P.P., Chem. Rev. 104, 1283 (2004).CrossRefGoogle Scholar
26.Bogdanovic, B., Felderhoff, M., Pommerin, A., Schüth, F., Spielkamp, N., Adv. Mater 18, 1198 (2006).Google Scholar
27.Gutowska, A., Li, L., Shin, Y., Wang, C.M., Li, X.S., Linehan, J.C., Smith, R.S., Kay, B.D., Schmid, B., Shaw, W., Gutowski, M., Autrey, T., Angew. Chem., Int. Ed. 44, 3578 (2005).CrossRefGoogle Scholar
28.Matus, M.H., Anderson, K.D., Camaioni, D.M., Autrey, S.T., Dixon, D.A., J. Phys. Chem. 111, 4411 (2007).Google Scholar
29.Yoon, C.W., Sneddon, L.G., J. Am. Chem. Soc. 128, 13992 (2006).Google Scholar
30.Muller, E., Sutter, E., Zahl, P., Ciobanu, C.V., Suttera, P., Appl. Phys. Lett. 90, 151917 (2007).CrossRefGoogle Scholar
31.Christensen, C.H., Johannessen, T., Sørensen, R.Z., Nørskov, J.K., Catal. Today 111, 140 (2006).Google Scholar
32.Chen, P., Xiong, Z., Luo, J., Lin, J., Tan, K.L., J. Phys. Chem. B 107, 10967 (2003).CrossRefGoogle Scholar
33.Herbst, J.F., Hector, L.G. Jr, Phys. Rev. B 72, 125120 (2005).CrossRefGoogle Scholar
34.Vajo, J.J., Olson, G.L., Scripta Mater. 56, 829 (2007).CrossRefGoogle Scholar
35.Lee, T.B., Kim, D., Jung, D.H., Choi, S.B., Yoon, J.H., Kim, J., Choi, K., Choi, S.-H., Catal. Today 120, 330 (2007).Google Scholar
36.Rowsell, J.L.C., Yaghi, O.M., Angew. Chem., Int. Ed. 44, 4670 (2005).CrossRefGoogle Scholar
37.Wipke, K., Sprik, S., Thomas, H., Kurtz, J., “Learning Demonstration Interim Progress Report—Summer 2007” (NREL Technical Report 560–41848, 2007; www.nrel.gov/docs/fy070sti/41848.pdf) (accessed January 2008).CrossRefGoogle Scholar
38.Stamenkovic, V.R., Fowler, B., Mun, B.S., Wang, G., Ross, P.N., Lucas, C.A., Marković, N.M., Science 315, 497 (2007).CrossRefGoogle Scholar
39.Greeley, J., Mavrikakis, M., Nat. Mater. 3, 810 (2004).Google Scholar
40.Zhang, J., Xie, Z., Zhang, J., Tang, Y., Songa, C., Navessin, T., Shi, Z., Song, D., Wang, H., Wilkinson, D.P., Liu, Z.-S., Holdcroft, S., J. Power Sources 160, 872 (2006).Google Scholar
41.Li, Q., He, R., Jensen, J.O., Bjerrum, N.J., Chem. Mater. 15, 4896 (2003).CrossRefGoogle Scholar
42.Asensio, J.A., Borrós, S., Gómez-Romeroa, P., Electrochim. Acta 49, 4461 (2004).CrossRefGoogle Scholar
43.Zhou, Z., Dominey, R.N., Rolland, J.P., Maynor, B.W., Pandya, A.A., DeSimone, J.M., J. Am. Chem. Soc. 128, 12963 (2006).CrossRefGoogle Scholar
44.Lashtabeg, A., Skinner, S.J., J. Mater. Chem. 16, 3161 (2006).CrossRefGoogle Scholar
45.Lu, X.C., Zhu, J.H., J. Power Sources 165, 678 (2007).CrossRefGoogle Scholar
46.Wilson, J., Kobsiriphat, W., Mendoza, R., Chen, H.-Y., Hiller, J., Miller, D., Thornton, K., Voorhees, P., Adler, S., Barnett, S., Nat. Mater. 5, 541 (2006).Google Scholar