Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-30T19:14:59.154Z Has data issue: false hasContentIssue false

Hybrid organic–inorganic halide perovskites for scaled-in neuromorphic devices

Published online by Cambridge University Press:  10 August 2020

P.C. Harikesh
Affiliation:
Nanyang Technological University, Singapore; [email protected]
Benny Febriansyah
Affiliation:
Nanyang Technological University, Singapore; [email protected]
Rohit Abraham John
Affiliation:
Nanyang Technological University, Singapore; [email protected]
Nripan Mathews
Affiliation:
Nanyang Technological University, Singapore; [email protected]
Get access

Abstract

Hybrid organic–inorganic halide perovskites have been recently explored as memristive devices that can be programmed to two or more stable conductance states for analog computing. The wide variety and range of optoelectronic phenomena these materials portray offer immense potential to develop scaled-in neuromorphic devices and architectures with multibit memory storage and multimodal accessibility. This article provides a general summary of the structural and optoelectronic characteristics of this material class that could be utilized for neuromorphic computing, discusses insights into the underlying switching mechanisms, and reviews recent developments in the field of halide perovskite-based neuromorphic devices.

Type
Organic Semiconductors for Brain-Inspired Computing
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Zidan, M.A., Strachan, J.P., Lu, W.D., Nat. Electron. 1, 22 (2018).CrossRefGoogle Scholar
Wang, Z., Wang, L., Nagai, M., Xie, L., Yi, M., Huang, W., Adv. Electron. Mater. 3, 1600510 (2017).CrossRefGoogle Scholar
van de Burgt, Y., Melianas, A., Keene, S.T., Malliaras, G., Salleo, A., Nat. Electron. 1, 386 (2018).CrossRefGoogle Scholar
Brandt, R.E., Stevanović, V., Ginley, D.S., Buonassisi, T., MRS Commun. 5, 265 (2015).CrossRefGoogle Scholar
John, R.A., Yantara, N., Ng, Y.F., Narasimman, G., Mosconi, E., Meggiolaro, D., Kulkarni, M.R., Gopalakrishnan, P.K., Nguyen, C.A., De Angelis, F., Adv. Mater. 30, 1805454 (2018).CrossRefGoogle Scholar
Saparov, B., Mitzi, D.B., Chem. Rev. 116, 4558 (2016).CrossRefGoogle Scholar
Tao, S., Schmidt, I., Brocks, G., Jiang, J., Tranca, I., Meerholz, K., Olthof, S., Nat.Commun. 10, 1 (2019).Google Scholar
Wang, Q., Shao, Y., Xie, H., Lyu, L., Liu, X., Gao, Y., Huang, J., Appl. Phys. Lett.105, 163508 (2014).CrossRefGoogle Scholar
Yuan, Y., Huang, J., Acc. Chem. Res. 49, 286 (2016).CrossRefGoogle Scholar
Febriansyah, B., Lekina, Y., Ghosh, B., Harikesh, P.C., Koh, T.M., Li, Y., Shen, Z., Mathews, N., England, J., ChemSusChem 13, 2693 (2020).CrossRefGoogle Scholar
Lin, H., Zhou, C., Tian, Y., Siegrist, T., Ma, B., ACS Energy Lett. 3, 54 (2018).CrossRefGoogle Scholar
Stoumpos, C.C., Cao, D.H., Clark, D.J., Young, J., Rondinelli, J.M., Jang, J.I., Hupp, J.T., Kanatzidis, M.G., Chem. Mater. 28, 2852 (2016).CrossRefGoogle Scholar
Grancini, G., Nazeeruddin, M.K., Nat. Rev. Mater. 4, 4 (2019).CrossRefGoogle Scholar
Li, X., Ke, W., Traoré, B., Guo, P., Hadar, I., Kepenekian, M., Even, J., Katan, C., Stoumpos, C.C., Schaller, R.D., Kanatzidis, M.G., J. Am. Chem. Soc. 141, 12880 (2019).CrossRefGoogle Scholar
Swartwout, R., Hoerantner, M.T., Bulović, V., Energy Environ. Mater. 2, 119 (2019).CrossRefGoogle Scholar
Xiao, Z., Huang, J., Adv. Electron. Mater. 2, 1600100 (2016).CrossRefGoogle Scholar
Xu, W., Cho, H., Kim, Y.-H., Kim, Y.-T., Wolf, C., Park, C.-G., Lee, T.-W., Adv. Mater. 28, 5916 (2016).CrossRefGoogle ScholarPubMed
Tian, H., Zhao, L., Wang, X., Yeh, Y.-W., Yao, N., Rand, B.P., Ren, T.-L., ACS Nano 11, 12247 (2017).CrossRefGoogle Scholar
Hwang, B., Lee, J.-S., Adv. Mater. 29, 1701048 (2017).CrossRefGoogle Scholar
Kang, K., Ahn, H., Song, Y., Lee, W., Kim, J., Kim, Y., Yoo, D., Lee, T., Adv. Mater. 31, 1804841 (2019).CrossRefGoogle Scholar
Pradhan, B., Das, S., Li, J., Chowdhury, F., Cherusseri, J., Pandey, D., Dev, D., Krishnaprasad, A., Barrios, E., Towers, A., Gesquiere, A., Tetard, L., Roy, T., Thomas, J., Sci. Adv. 6, eaay5225 (2020).Google Scholar
Kim, H., Choi, M.-J., Suh, J.M., Han, J.S., Kim, S.G., Le, Q.V., Kim, S.Y., Jang, H.W., NPG Asia Mater. 12, 1 (2020).CrossRefGoogle Scholar
Zhu, Y., Cheng, P., Shi, J., Wang, H., Liu, Y., Xiong, R., Ma, H., Ma, H., Adv. Electron. Mater. 6, 1900754 (2020).CrossRefGoogle Scholar
Lee, S., Kim, H., Kim, D.H., Kim, W.B., Lee, J.M., Choi, J., Shin, H., Han, G.S., Jang, H.W., Jung, H.S., ACS Appl. Mater. Interfaces 12, 17039 (2020).CrossRefGoogle ScholarPubMed
Zhao, L., Kerner, R.A., Xiao, Z., Lin, Y.L., Lee, K.M., Schwartz, J., Rand, B.P., ACS Energy Lett. 1, 595 (2016).CrossRefGoogle Scholar
Svanström, S., Jacobsson, T.J., Boschloo, G., Johansson, E.M.J., Rensmo, H., Cappel, U.B., ACS Appl. Mater. Interfaces 12, 7212 (2020).CrossRefGoogle Scholar
Yang, J.-M., Kim, S.-G., Seo, J.-Y., Cuhadar, C., Son, D.-Y., Lee, D., Park, N.-G., Adv. Electron. Mater. 4, 1800190 (2018).CrossRefGoogle Scholar
Lee, S., Choi, J., Jeon, J.B., Kim, B.J., Han, J.S., Kim, T.L., Jung, H.S., Jang, H.W., Adv. Electron. Mater. 5, 1800586 (2019).CrossRefGoogle Scholar
Yang, T.-Y., Gregori, G., Pellet, N., Grätzel, M., Maier, J., Angew. Chem. Int. Ed. 54, 7905 (2015).Google Scholar
Senocrate, A., J. Maier, J. Am. Chem. Soc. 141, 8382 (2019).CrossRefGoogle Scholar
Kim, D.J., Tak, Y.J., Kim, W.-G., Kim, J.K., Kim, J.H., Kim, H.J., Adv. Mater. Interfaces 4, 1601035 (2017).CrossRefGoogle Scholar
Senocrate, A., Moudrakovski, I., Kim, G.Y., Yang, T.-Y., Gregori, G., Grätzel, M., Maier, J., Angew. Chem. Int. Ed. Engl. 56, 7755 (2017).Google Scholar
Futscher, M.H., Lee, J.M., McGovern, L., Muscarella, L.A., Wang, T., Haider, M.I., Fakharuddin, A., Schmidt-Mende, L., Ehrler, B., Mater. Horiz. 6, 1497 (2019).CrossRefGoogle Scholar
Yuan, Y., Chae, J., Shao, Y., Wang, Q., Xiao, Z., Centrone, A., Huang, J., Adv. Energy Mater. 5, 1500615 (2015).CrossRefGoogle Scholar
Xiao, Z., Yuan, Y., Shao, Y., Wang, Q., Dong, Q., Bi, C., Sharma, P., Gruverman, A., Huang, J., Nat. Mater. 14, 193 (2015).CrossRefGoogle Scholar
Harikesh, P.C., Wu, B., Ghosh, B., John, R.A., Lie, S., Thirumal, K., Wong, L.H., Sum, T.C., Mhaisalkar, S., Mathews, N., Adv. Mater. 30, 1802080 (2018).CrossRefGoogle Scholar
Cuhadar, C., Kim, S.-G., Yang, J.-M., Seo, J.-Y., Lee, D., Park, N.-G., ACS Appl. Mater. Interfaces 10, 29741 (2018).CrossRefGoogle Scholar
Harikesh, P.C., Surendran, A., Ghosh, B., John, R.A., Moorthy, A., Yantara, N., Salim, T., Thirumal, K., Leong, W.L., Mhaisalkar, S., Mathews, N., Adv. Mater. 32, 1906976 (2020).CrossRefGoogle Scholar
Whitfield, P.S., Herron, N., Guise, W.E., Page, K., Cheng, Y.Q., Milas, I., Crawford, M.K., Sci. Rep. 6, 1 (2016).CrossRefGoogle Scholar
Choi, J., Han, J.S., Hong, K., Kim, S.Y., Jang, H.W., Adv. Mater. 30, 1704002 (2018).CrossRefGoogle Scholar
Pedesseau, L., Jancu, J.-M., Rolland, A., Deleporte, E., Katan, C., Even, J., Opt.Quantum Electron. 46, 1225 (2014).CrossRefGoogle Scholar
Hong, X., Ishihara, T., Nurmikko, A.V., Phys. Rev. B 45, 6961 (1992).CrossRefGoogle Scholar
Muljarov, E.A., Tikhodeev, S.G., Gippius, N.A., Ishihara, T., Phys. Rev. B 51, 14370 (1995).CrossRefGoogle Scholar
Kim, S.-I., Lee, Y., Park, M.-H., Go, G.-T., Kim, Y.-H., Xu, W., Lee, H.-D., Kim, H., Seo, D.-G., Lee, W., Lee, T.-W., Adv. Electron. Mater. 5, 1900008 (2019).CrossRefGoogle Scholar
Febriansyah, B., Koh, T.M., John, R.A., Ganguly, R., Li, Y., Bruno, A., Mhaisalkar, S.G., England, J., Chem. Mater. 30, 5827 (2018).CrossRefGoogle Scholar
Maughan, A.E., Kurzman, J.A., Neilson, J.R., Inorg. Chem. 54, 370 (2015).CrossRefGoogle Scholar
Kovalenko, M.V., Protesescu, L., Bodnarchuk, M.I., Science 358, 745 (2017).CrossRefGoogle Scholar
Era, M., Miyake, K., Yoshida, Y., Yase, K., Thin Solid Films 393, 24 (2001).CrossRefGoogle Scholar
Liao, W.-Q., Zhao, D., Tang, Y.-Y., Zhang, Y., Li, P.-F., Shi, P.-P., Chen, X.-G., You, Y.-M., Xiong, R.-G., Science 363, 1206 (2019).CrossRefGoogle Scholar
Lu, H., Wang, J., Xiao, C., Pan, X., Chen, X., Brunecky, R., Berry, J.J., Zhu, K., Beard, M.C., Vardeny, Z.V., Sci. Adv. 5, eaay0571 (2019).CrossRefGoogle Scholar
Polyakov, A.O., Arkenbout, A.H., Baas, J., Blake, G.R., Meetsma, A., Caretta, A., van Loosdrecht, P.H.M., Palstra, T.T.M., Chem. Mater. 24, 133 (2012).CrossRefGoogle Scholar