Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-24T08:35:16.818Z Has data issue: false hasContentIssue false

Hot-carrier dynamics in catalysis

Published online by Cambridge University Press:  10 January 2020

Hayk Harutyunyan
Affiliation:
Emory University, USA; [email protected]
Figen Suchanek
Affiliation:
William Paterson University of New Jersey, USA; [email protected]
Robert Lemasters
Affiliation:
Emory University, USA; [email protected]
Jonathan J. Foley IV
Affiliation:
William Paterson University of New Jersey, USA; [email protected]
Get access

Abstract

Nanoscale materials that contain metallic components can be designed to have excellent light-harvesting capabilities, and can also be used to direct the flow of energy from incident photons into small molecules at or near the surface of metal nanoparticles. One promising route for energy flow is through so-called hot charge carriers, which are optically excited on metal nanoparticles and subsequently transferred to molecules/materials that share an interface with the metal. This article provides an overview of the fundamentals of hot-carrier generation and transfer, discusses both theoretical and experimental means for interrogating these processes, and discusses several potential societally important applications of hot-carrier-driven chemistry to solar fuels and sustainable chemistry.

Type
Materials for Hot-Carrier Chemistry
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Mennucci, B., Corni, S., Nat. Rev. Chem. 3, 315 (2019).CrossRefGoogle Scholar
Linic, S., Christopher, P., Ingram, D.B., Nat. Mater. 10, 911 (2011).CrossRefGoogle Scholar
Brongersma, M.L., Halas, N.J., Norldlander, P., Nat. Nanotechnol. 10, 25 (2019).CrossRefGoogle Scholar
Zhang, Y., He, S., Guo, W., Hu, Y., Huang, J., Mulcahy, J.R., Wei, W.D., Chem. Rev. 118, 2927 (2018).CrossRefGoogle Scholar
Zhang, N., Han, C., Xu, Y.-J., Foley IV, J.J., Zhang, D.. Codrington, J., Gray, S.K., Sun, Y., Nat. Photonics 10, 473 (2016).CrossRefGoogle Scholar
Codrington, J., Eldabagh, N., Fernando, K., Foley IV, J.J., ACS Photonics 4, 552 (2017).CrossRefGoogle Scholar
Hartland, G.V., Besteiro, L.V., Johns, P., Govorov, A.O., ACS Energy Lett . 2, 1641 (2017).CrossRefGoogle Scholar
Yan, L., Wang, F., Meng, S., ACS Nano 10, 5452 (2016).CrossRefGoogle Scholar
Long, R., Prezhdo, O.V., J. Am. Chem. Soc. 136, 4343 (2014).CrossRefGoogle Scholar
Bohren, C.F., Huffman, D.R., Absorption and Scattering of Light by Small Particles (Wiley, New York, 1998).CrossRefGoogle Scholar
Mischenko, M.I., Travis, L.D., Mackowski, D.W., J. Quant. Spectrosc. Radiat. Transf. 55, 535 (1996).CrossRefGoogle Scholar
Draine, B.T., Flatau, P.J., J. Opt. Soc. Am. A 11, 1491 (1994).CrossRefGoogle Scholar
Jin, J.-M., The Finite Element Method in Electromagnetics (Wiley, 2014, Hoboken, NJ).Google Scholar
Taflov, A., Hagness, S.C., Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech, Boston, 2005).Google Scholar
Govorov, A.O., Zhang, H., Gun’ko, Y.K., J. Phys. Chem. C 117, 16616 (2013).CrossRefGoogle Scholar
Manjavacs, A., Liu, J.G., Kulkarni, V., Nordlander, P., ACS Nano 8, 7630 (2014).CrossRefGoogle Scholar
Ilawe, N.V., Owiedo, M.B., Wong, B.M., J. Chem. Theory Comput. 13, 3442 (2017).CrossRefGoogle Scholar
Mukherjee, S., Libisch, F., Large, N., Neumann, O., Brown, L., Cheng, J., Lassiter, J.B., Carter, E.A., Nordlander, P., Halas, N.J., Nano Lett . 13, 240 (2013).CrossRefGoogle Scholar
Cai, Y.-Y., Liu, J.G., Tauzin, L.J., Huang, D., Sung, E., Zhang, H., Joplin, A., Chang, W.-S., Nordlander, P., Link, S., ACS Nano 12, 976 (2018).CrossRefGoogle Scholar
Wu, K., Chen, J., McBride, J.R., Lian, T., Science 349, 632 (2015).CrossRefGoogle Scholar
Harutyunyan, H., Martinson, A.B.F., Rosenmann, D., Khorashad, L.K., Besteiro, L.V., Govorov, A.O., Wiederrecht, G.P., Nat. Nanotechnol. 10, 770 (2015).CrossRefGoogle Scholar
Giugni, A., Torre, B., Toma, A., Francardi, M., Malerba, M., Alabastri, A., Zaccaria, R.P., Stockman, M.I., Fabrizio, E.D., Nat. Nanotechnol. 8, 845 (2013).CrossRefGoogle Scholar
Lozan, O., Sundararaman, R., Ea-Kim, B., Rampnoux, J.-M., Narang, P., Dilhaire, S., Lalanne, P., Nat. Commun. 8, 1656 (2017).CrossRefGoogle Scholar
Sun, C.-K., Vallee, F., Acioli, L.H., Ippen, E.P., Fujimoto, J.G., Phys. Rev. B 50, 15337 (1994).CrossRefGoogle Scholar
Hartland, G.V., Chem. Rev. 111, 3858 (2011).CrossRefGoogle Scholar
Brown, A.M., Sundararaman, R., Narang, P., Schwartzberg, A.M., Goddard, W.A., Atwater, H.A., Phys. Rev. Lett. 118, 087401 (2017).CrossRefGoogle Scholar
Sykes, M.E., Stewart, J.W., Akselrod, G.M., Kong, X.-T., Wang, Z., Gosztola, D.J., Martinson, A.B.F., Rosenmann, D., Mikkelsen, M.H., Govorov, A.O., Wiederrecht, G.P., Nat. Commun. 8, 986 (2017).CrossRefGoogle Scholar
Heilpern, T., Manjare, M., Govorov, A.O., Wiederrecht, G.P., Gray, S.K., Harutyunyan, H., Nat. Commun. 9, 1853 (2018).CrossRefGoogle Scholar
Landau, L., J. Phys. 10, 25 (1946).Google Scholar
Kreibig, U., Genzel, L., Surf. Sci. 156, 678 (1985).CrossRefGoogle Scholar
Clavero, C., Nat. Photonics 8, 95 (2014).CrossRefGoogle Scholar
Block, A., Liebel, M., Yu, R., Spector, M., Sivan, Y., García de Abajo, F.J., van Hulst, N.F., Sci. Adv. 5, eaav8965 (2019).CrossRefGoogle Scholar
Nicholls, L.H., Stefaniuk, T., Nasir, M.E., Rodríguez-Fortuño, F.J., Wurtz, G.A., Zayats, A.V., Nat. Commun. 10, 2967 (2019).CrossRefGoogle Scholar
Haug, T., Klemm, P., Bange, S., Lupton, J.M., Phys. Rev. Lett. 115, 67403 (2015).CrossRefGoogle Scholar
Cai, Y.-Y., Sung, E., Zhang, R., Tauzin, L.J., Liu, J.G., Ostovar, B., Zhang, Y., Chang, W.-S., Nordlander, P., Link, S., Nano Lett . 19, 1067 (2019).CrossRefGoogle Scholar
Beversluis, M.R., Bouhelier, A., Novotny, L., Phys. Rev. B 68, 115433 (2003).CrossRefGoogle Scholar
Roloff, L., Klemm, P., Gronwald, I., Huber, R., Lupton, J.M., Bange, S., Nano Lett . 17, 7914 (2017).CrossRefGoogle Scholar
Mertens, J., Kleemann, M.-E., Chikkaraddy, R., Narang, P., Baumberg, J.J., Nano Lett . 17, 2568 (2017).CrossRefGoogle Scholar
Detz, R.J., Reek, J.N.H., van der Zwaan, B.C.C., Energy Environ. Sci. 11, 1653 (2018).CrossRefGoogle Scholar
Lee, J., Mubeen, S., Ji, X., Stucky, G.D., Moskovits, M., Nano Lett . 12, 5014 (2012).CrossRefGoogle Scholar
Mubeen, S., Lee, J., Singh, N., Krämer, S., Stucky, G.D., Moskovits, M., Nat. Nanotechnol. 8, 247 (2013).CrossRefGoogle Scholar
Robatjazi, H., Bahauddin, S.M., Doiron, C., Thomann, I., Nano Lett . 15, 6155 (2015).CrossRefGoogle Scholar
Neatur, S., Maciá-Agulló, J.A., Conceptión, P., Garcia, H., J. Am. Chem. Soc. 136, 15969 (2014).CrossRefGoogle Scholar
Wang, F., Li, C., Chen, H., Jiang, R., Sun, L.-D., Li, Q., Wang, J., Yu, J.C., Yan, C.-H., J. Am. Chem. Soc. 135, 5599 (2013).Google Scholar
Guselnikova, O., Olshtrem, A., Kalachyova, Y., Panov, I., Postnikov, P., Svorcik, V., Lyutokov, O., J. Phys. Chem. C 122, 26613 (2018).CrossRefGoogle Scholar