Crossref Citations
This article has been cited by the following publications. This list is generated based on data provided by
Crossref.
Sun, Ruoshi
Asta, Mark
and
van de Walle, Axel
2019.
First-principles thermal compatibility between Ru-based Re-substitute alloys and Ir coatings.
Computational Materials Science,
Vol. 170,
Issue. ,
p.
109199.
Pollock, Tresa M.
and
Van der Ven, Anton
2019.
The evolving landscape for alloy design.
MRS Bulletin,
Vol. 44,
Issue. 4,
p.
238.
Kolli, Sanjeev Krishna
Natarajan, Anirudh Raju
Thomas, John C.
Pollock, Tresa M.
and
Van der Ven, Anton
2020.
Discovering hierarchies among intermetallic crystal structures.
Physical Review Materials,
Vol. 4,
Issue. 11,
Manzoor, Anus
and
Aidhy, Dilpuneet S.
2020.
Predicting vibrational entropy of fcc solids uniquely from bond chemistry using machine learning.
Materialia,
Vol. 12,
Issue. ,
p.
100804.
Peng, Jian
Lee, Sangkeun
Williams, Andrew
Haynes, J. Allen
and
Shin, Dongwon
2020.
Advanced data science toolkit for non-data scientists – A user guide.
Calphad,
Vol. 68,
Issue. ,
p.
101733.
Samanta, Sayan
and
van de Walle, Axel
2021.
Rapid screening of high-throughput ground state predictions.
Calphad,
Vol. 74,
Issue. ,
p.
102306.
Sundman, Bo
Dupin, Nathalie
and
Hallstedt, Bengt
2021.
Algorithms useful for calculating multi-component equilibria, phase diagrams and other kinds of diagrams.
Calphad,
Vol. 75,
Issue. ,
p.
102330.
Chen, Hantong
Hong, Qijun
Ushakov, Sergey
Navrotsky, Alexandra
and
van de Walle, Axel
2021.
A simple method for computing the formation free energies of metal oxides.
Computational Materials Science,
Vol. 198,
Issue. ,
p.
110692.
Mishin, Y.
2021.
Machine-learning interatomic potentials for materials science.
Acta Materialia,
Vol. 214,
Issue. ,
p.
116980.
Tripathi, Shivam
Fan, Lok C.
Titus, Michael S.
and
Strachan, Alejandro
2021.
Automated approach to discover coherent precipitates in multi-component shape memory alloys.
Computational Materials Science,
Vol. 197,
Issue. ,
p.
110651.
Beniwal, Dishant
Jhalak
and
Ray, Pratik K.
2022.
Forcefields for Atomistic-Scale Simulations: Materials and Applications.
Vol. 99,
Issue. ,
p.
315.
van de Walle, Axel
Chen, Hantong
Liu, Helena
Nataraj, Chiraag
Samanta, Sayan
Zhu, Siya
and
Arroyave, Raymundo
2022.
Interactive Exploration of High-Dimensional Phase Diagrams.
JOM,
Vol. 74,
Issue. 9,
p.
3478.
Chen, Enze
Tamm, Artur
Wang, Tao
Epler, Mario E.
Asta, Mark
and
Frolov, Timofey
2022.
Modeling antiphase boundary energies of Ni3Al-based alloys using automated density functional theory and machine learning.
npj Computational Materials,
Vol. 8,
Issue. 1,
Klenam, Desmond E.P.
and
Soboyejo, Winston O.
2022.
Comprehensive Structural Integrity.
p.
331.
Nazarov, A. V.
2022.
On the Theory of Interdiffusion in Ternary Alloys.
Physics of Metals and Metallography,
Vol. 123,
Issue. 5,
p.
425.
Sergeev, G. V.
Makarova, V. A.
Kahidze, R. Z.
and
Nazarov, A. V.
2022.
On the Theory of Interdiffusion in Ternary Alloys: Concentration Dependences of Kinetics-Related Coefficients.
Physics of Metals and Metallography,
Vol. 123,
Issue. 5,
p.
432.
Guan, Pin-Wen
2022.
Differentiable thermodynamic modeling.
Scripta Materialia,
Vol. 207,
Issue. ,
p.
114217.
Raabe, Dierk
Ponge, Dirk
Uggowitzer, Peter J.
Roscher, Moritz
Paolantonio, Mario
Liu, Chuanlai
Antrekowitsch, Helmut
Kozeschnik, Ernst
Seidmann, David
Gault, Baptiste
De Geuser, Frédéric
Deschamps, Alexis
Hutchinson, Christopher
Liu, Chunhui
Li, Zhiming
Prangnell, Philip
Robson, Joseph
Shanthraj, Pratheek
Vakili, Samad
Sinclair, Chad
Bourgeois, Laure
and
Pogatscher, Stefan
2022.
Making sustainable aluminum by recycling scrap: The science of “dirty” alloys.
Progress in Materials Science,
Vol. 128,
Issue. ,
p.
100947.
Kannan, Rangasayee
Knapp, Gerald L.
Nandwana, Peeyush
Dehoff, Ryan
Plotkowski, Alex
Stump, Benjamin
Yang, Ying
and
Paquit, Vincent
2022.
Data Mining and Visualization of High-Dimensional ICME Data for Additive Manufacturing.
Integrating Materials and Manufacturing Innovation,
Vol. 11,
Issue. 1,
p.
57.
Woods-Robinson, Rachel
Horton, Matthew K.
and
Persson, Kristin A.
2023.
A method to computationally screen for tunable properties of crystalline alloys.
Patterns,
Vol. 4,
Issue. 5,
p.
100723.