Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-12T21:40:20.705Z Has data issue: false hasContentIssue false

Highly Correlated Electron Systems

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

The study of materials which have electronic phase transitions is a very active area. Such phase transitions include charge and spin density formation, as well the superconducting condensation in a rapidly expanding variety of materials. It is now common to lump these phenomena under the heading of correlated electron physics, involving as they do the essential role of electron-electron interactions in their occurrence. There are also materials in which there is found no electronic phase transition, but whose properties indicate strong electron-electron effects, such as a number of the so-called heavy fermion compounds. The part of condensed matter theory which addresses the particular physics of such materials is generally known as many-body physics. How to effectively treat strong electronic interactions theoretically is very much an unsolved problem, and theory does not give much more than limited guidance to the experimental research in this area. External magnetic fields have proved to be effective experimental probes of the properties of such systems, and the advent of increasingly strong pulsed fields is opening new possibilities for exposing and pulling apart the underlying electronic ground state of many such materials.

Type
Materials Science in High Magnetic Fields
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Ott, H.R., Rudigier, H., Fisk, Z., and Smith, J.L., Phys. Rev. Lett. 50 (1983) p. 1595.CrossRefGoogle Scholar
2.Ott, H.R., Rudigier, H., and Delsing, P., Phys. Rev. Lett. 52 (1984) p. 1551.CrossRefGoogle Scholar
3.Broholm, C., Kjems, J.K., Aeppli, G., Fisk, Z., Smith, J.L., Shapiro, S.M., Shirane, G., and Ott, H.R., Phys. Rev. Lett. 58 (1987) p. 917.CrossRefGoogle Scholar
4.Steglich, F., Aarts, J., Bredl, C.D., Lieke, W., Meschede, D., and Franz, W., Phys. Rev. Lett. 43 (1979) p. 1892.CrossRefGoogle Scholar
5. See discussion in Kleiman, R., Rev. Mod. Phys., in press.Google Scholar
6.Ott, H.R., Rudigier, H., Felder, E., Fisk, Z., and Smith, J.L., Phys. Rev. B 33 (1986) p. 126.CrossRefGoogle Scholar
7.Heffner, R.H., Smith, J.L., Willis, J.O., Birrer, P., Baines, C., Gygax, F.N., Hitti, B., Lippelt, E., Ott, H.R., Schenck, A., Knetsch, E.A., Mydosh, J.A., and MacLaughlin, D.E., Phys. Rev. Lett. 65 (1990) p. 2816.CrossRefGoogle Scholar
8.Fisher, R.A., Kim, S., Woodfield, B.F., Phillips, N.E., Taillefer, L., Hasselbach, K., Flouquet, J., Giorgi, A.L., and Smith, J.L., Phys. Rev. Lett. 62 (1989) p. 1411.CrossRefGoogle Scholar
9.Aeppli, G., Bucher, E., Broholm, C., Kjems, J.K., Baumann, J., and Hufnagl, J., Phys. Rev. Lett. 60 (1988) p. 615.CrossRefGoogle Scholar
10.Midgley, P.A., Hayden, S.M., Taillefer, L., Bogenberger, B., Löhneysen, H. v., Phys. Rev. Lett. 70 (1993) p. 678.CrossRefGoogle Scholar
11.Ott, H.R., Rudigier, H., Felder, E., Fisk, Z., and Batlogg, B., Phys. Rev. Lett. 55 (1985) p. 1595.CrossRefGoogle Scholar
12.van Daal, H.J., Buschow, K.H.J., van Aken, P.B., and van Maaren, M.H., Phys. Rev. Lett. 34 (1975) p. 1457.CrossRefGoogle Scholar
13.Aeppli, G. and Fisk, Z., Comments Cond. Mater. Phys. 16 (1992) p. 155.Google Scholar
14.Fisk, Z., Canfield, P.C., Beyermann, W.P., Thompson, J.D., Hundley, M.F., Ott, H.R., Felder, E., Maple, M.B., de la Torre, M.A. Lopez, Visani, P., and Seaman, C.L., Phys. Rev. Lett. 67 (1991) p. 3310.CrossRefGoogle Scholar
15.Stewart, G., Fisk, Z., Willis, J.O., and Smith, J.L., Phys. Rev. Lett. 52 (1984) p. 679.CrossRefGoogle Scholar
16.Schlabitz, W., Baumann, J., Pollit, B., Rauchschwalbe, U., Mayer, H.M., Ahlheim, U., and Bredl, C.D., Z. Phys. B 62 (1986) p. 171.CrossRefGoogle Scholar
17.Geibel, C., Schank, C., Thies, S., Kitazawa, H., Bredl, C.D., Bohm, A., Grauel, A., Caspary, R., Helfrich, R., Ahlheim, U., Weber, G., and Steglich, E., Z. Phys. B 83 (1991) p. 305.CrossRefGoogle Scholar
18.Onnes, H. Kamerlingh, Onnes Comm. Phys. Lab. Leiden, Nos. 119,120,122 (1911).Google Scholar
19.Bardeen, J., Cooper, L.N., and Schrieffer, J.R., Phys. Rev. 162 (1957) p. 108, 1175.CrossRefGoogle Scholar
20.Bednorz, J.G. and Müller, K.A., Z. Phys. B 64 (1986) p. 189.CrossRefGoogle Scholar
21.Proc. High Temperature Superconducting, edited by Bedell, K.S., Coffey, D., Meitzer, D.E., Pines, D., and Schrieffer, J.R. (Addison Wesley, 1990).Google Scholar
22.Zhang, E.C. and Rice, T.M., Phys. Rev. B 37 (1988) p. 375.Google Scholar
23.Schrieffer, J.R., Wen, X-G., and Zhang, S-C., Phys. Rev. Lett. 60 (1988) p. 944; Phys. Rev. B 39 (1989) p. 11663.CrossRefGoogle Scholar
24.Anderson, P.W., Science 235 (1987) p. 1196.CrossRefGoogle Scholar
25.Sigrist, Manfred and Ueda, Kazuo, Rev. Mod. Phys. 63 (1991) p. 239.CrossRefGoogle Scholar
26.Proc. Santa Fe Conf. on Strongly Correlated Permions (March 1993).Google Scholar