Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-24T12:56:06.421Z Has data issue: false hasContentIssue false

Growth-Factor Delivery in Tissue Engineering

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

Soluble signaling proteins called growth factors execute critical functions during the formation of specialized tissues throughout the developing embryo. When growth factors are provided to adult animals, they often encourage regeneration or repair of organs damaged by disease or trauma: Basic fibroblast growth factor (bFGF) and transforming growth factor ß1 (TGF-ß1) encourage wound healing hematopoetic growth factors stimulate the production of blood cells, bone morphogenetic proteins (BMPs) induce bone formation, nerve growth factor (NGF) enhances the survival of degenerating cholinergic neurons, and angiogenic growth factors activate new blood-vessel growth. Our understanding of the role of growth factors in development and regeneration should continue to expand dramatically over the next decade, inasmuch as new molecules (and new activities for known molecules) are appearing at a rapid rate.

Protein growth factors may be useful in augmenting the new approaches for tissue engineering. Modern biotechnology permits the large-scale manufacture of highly purified proteins so that large quantities can be produced for use in humans. However proteins are often exceedingly difficult to administer, particularly if sustained levels are required. Most protein growth factors have short half-lives after intravenous injection, with their biological activity lasting only a few minutes in the circulation, so that injection must be repeated frequently to obtain sustained blood levels (Table I). Since these molecules are large, they penetrate tissue barriers, such as the capillary wall, very slowly. In addition, growth factors are extremely potent, often possessing biological activity at a number of tissue sites throughout the body. Therefore systemic administration can lead to toxicity. In view of these difficulties, new methods for growth-factor delivery are needed. The most promising new methods involve polymers, which can be engineered to provide precisely controlled, prolonged growth-factor delivery at a localized site.

Type
Tissue Engineering
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Horn, D.B. and Maisei, R.H., Ann. Otol., Rhinol. & Laryngol. 101 (1992) p. 349.Google Scholar
2.Nail, A.V., Brownlee, R.E., Colvin, C.P., Schultz, G., Fein, D., Cassisi, N.J., Nguyen, T., and Kalra, A., Arch. Otolaryngol. Head Neck Surg. 122 (1996) p. 171.CrossRefGoogle Scholar
3.Nicola, N.A., Annu. Rev. Biochem. 58 (1989) p. 45.CrossRefGoogle Scholar
4.Reddi, A.H., J. Cell. Biochem. 56 (1994) p. 192.CrossRefGoogle Scholar
5.Koliatsos, V.E., Clatterbuck, B.S., Nauta, G.J.W., Knusel, B., Burton, L.E., Hefti, F.F., Mobley, W.C., and Price, D.L., Ann. Neurol. 30 (1991) p. 831.CrossRefGoogle Scholar
6.Koliatsos, V., Nauta, H., Clatterbuck, R., Holtzman, D., Mobley, W., and Price, D., J. Neurosci. 10 (1990) p. 3801.CrossRefGoogle Scholar
7.Folkman, J., New England J. Med. 333 (1995) p. 1757.CrossRefGoogle Scholar
8.Vacanti, J.P., Morse, M., Domb, A., Saltzman, W.M., Perez-Atayde, A., and Langer, R., J. Pediatric Surg. 23 (1988) p. 3.CrossRefGoogle Scholar
9.Langer, R. and Vacanti, J.P., Science 260 (1993) p. 920.CrossRefGoogle Scholar
10.Hoffman, D., Wahlberg, L., and Aebischer, P., Exp. Neurol. 110 (1990) p. 39.CrossRefGoogle Scholar
11.Craig, C.G., Tropepe, V., Morshead, C.M., Reynolds, B.A., Weiss, S., and van der Kooy, D., J. Neurosci. 16 (1996) p. 2649.CrossRefGoogle Scholar
12.Brown, L., Siemer, L., Munoz, C., Edelman, E., and Langer, R., Diabetes 35 (1986) p. 692.CrossRefGoogle ScholarPubMed
13.Edelman, E.R., Mathiowitz, E., Langer, R., and Klagsbrun, M., Biomaterials 12 (1991) p. 619.CrossRefGoogle Scholar
14.Murray, J., Brown, L., Langer, R., and Klagsbrun, M., In Vitro 19 (1983) p. 743.CrossRefGoogle Scholar
15.Krewson, C.E., Klarman, M., and Saltzman, W.M., Brain Res. 680 (1995) p. 196.CrossRefGoogle Scholar
16.Krewson, C.E. and Saltzman, W.M., Brain Res. 727 (1996) p. 169.CrossRefGoogle Scholar
17.Lee, A. and Langer, R., Science 221 (1983) p. 1185.CrossRefGoogle Scholar
18.Saltzman, W.M. and Langer, R., Biophys. J. 55 (1989) p. 163.CrossRefGoogle Scholar
19.Radomsky, M.L., Whaley, K.J., Cone, R.A., and Saltzman, W.M., Biol. Reprod. 47 (1992) p. 133.CrossRefGoogle Scholar
20.Saltzman, W.M., Critical Rev. Therapeutic Drug Carrier Sys. 10 (1993) p. 111.Google Scholar
21.Sherwood, J.K., Zeitlin, L., Whaley, K.J., Cone, R.A., and Saltzman, W.M., Nature Bio-technol. 14 (1996) p. 468.CrossRefGoogle Scholar
22.Wyatt, T.L., Whaley, K.J., Cone, R.A., and Saltzman, W.M., Proc. Int. Symp. Control. Rel. Bioact. Mater. 20 (1993) p. 61.Google Scholar
23.Pries, I. and Langer, R., J. Immunol. Methods 28 (1979) p. 193.CrossRefGoogle Scholar
24.Camarata, P.J., Suryanarayanan, R., and Turner, D.A., Neurosurgery 30 (1992) p. 313.CrossRefGoogle Scholar
25.Krewson, C.E. and Saltzman, W.M., J. Biomater. Sci. in press.Google Scholar
26.Gombotz, W.R., Pankey, S.C., Bouchard, L.S., Ranchalis, J., and Puolakkainen, P.,Neurosurgery, Polym. Ed. 5 (1993) p. 49.Google Scholar
27.Cleland, J.L., Duenas, E.T., Daugherty, A., Marian, M., Yang, J., Wilson, M., Shahzamani, A., Chu, H., Mukku, V., Maa, Y-F., Hsu, C., and Jones, A.J.S., Proc. Int. Symp. Control. Rel. Bioact. Mater. 22 (1995) p. 143.Google Scholar
28.Mathiowitz, E., Saltzman, W.M., Domb, A., Dor, P., and Langer, R., J. Appl. Polym. Sci. 35 (1988) p. 755.CrossRefGoogle Scholar
29.Sherwood, J.K., Dause, R.B., and Saltzman, W.M., Bio/Technology 10 (1992) p. 1446.Google Scholar
30.Cleland, J.L., in Vaccine Design: The Sub-unit and Adjuvant Approach, edited by Powell, M.F. and Newman, M.J. (Plenum Press, New York, 1995) p. 439.CrossRefGoogle Scholar
31.Whittum-Hudson, J.A., Prendergast, R.A., Saltzman, W.M., An, L.L., and MacDonald, A.B., Nature Medicine in press.Google Scholar
32.Marx, P.A., Compans, R.W., Gettie, A., Staas, J.K., Gilley, R.M., Mulligan, M.J., Yamshchikov, G.V., Chen, D., and Eldridge, J.H., Science 260 (1993) p. 1323.CrossRefGoogle Scholar
33.Puolakkainen, P.A., Twardzik, D.R., Ranchalis, J.E., Pankey, S.C., Reed, M.J., and Gombotz, W.R., J. Surg. Res. 58 (1995) p. 321.CrossRefGoogle Scholar
34.Hill-West, J.L., Dunn, R.C., and Hubbell, J.A., J. Surg. Res. 59 (1995) p. 759.CrossRefGoogle Scholar
35.Hubbell, J.A., Bio/Technology 13 (1995) p. 565.Google Scholar
36.Baldwin, S.P. and Saltzman, W.M., Trends Polym. Sci. 4 (1996) p. 177.Google Scholar
37.Freed, L., Marquis, J., Nohria, A., Emmanual, J., Mikos, A., and Langer, R.,J. Biomed. Mater. Res. 27 (1993) p. 11.CrossRefGoogle Scholar
38.Vacanti, C.A., Langer, R., Schloo, B., and Vacanti, J.P., Plastic Reconstructive Surg. 88 (1991) p. 753.CrossRefGoogle Scholar
39.Uyama, S., Kaufman, P.M., Takeda, T., and Vacanti, J.P., Transplantation 55 (1993) p. 932.CrossRefGoogle Scholar
40.Olson, L., Backman, L., Edenbai, T., Eriksdotter-Jonhagen, M., Hoffer, B., Humpel, C., Freedman, R., Giacobini, M., Meyerson, B., Nordberg, A., Seiger, A., Stromberg, I., Sydow, O., Tomac, A., Trok, K., and Winblad, B., J. Neurol. 241 (1994) p. S12.CrossRefGoogle Scholar
41.Niijima, K., Chalmers, G.R., Peterson, D.A., Fisher, L.J., Patterson, P.H., and Gage, F.H., J. Neurosci. 15 (1995) p. 1180.CrossRefGoogle Scholar
42.Krewson, C.E. and Saltzman, W.M., Tissue Engineering in press.Google Scholar
43.Radomsky, M.L., Whaley, K.J., Cone, R.A., and Saltzman, W.M., Biomaterials 11 (1990) p. 619.CrossRefGoogle Scholar
44.Beaty, C.E. and Saltzman, W.M., J. Control. Rel. 24 (1993) p. 15.CrossRefGoogle Scholar
45.Wolpert, L., Current Topics Dev. Biol. 6 (1971) p. 183.CrossRefGoogle Scholar
46.Driever, W. and Nusslein-Volhard, C., Cell 54 (1988) p. 83.CrossRefGoogle Scholar
47.Nicoll, S.B., Denker, A.E., and Tuan, R.S., Cells Mater. 5 (1995) p. 231.Google Scholar
48.Lo, H., Ponticello, M., and Leong, K., Tissue Eng. 1 (1995) p. 15.CrossRefGoogle Scholar
49.Carbonetto, S.T., Gruver, M.M., and Turner, D.C., Science 216 (1982) p. 897.CrossRefGoogle Scholar
50.Kuhl, P. and Griffith-Cima, L.G., Nature Med. 2 (1996) p. 1022.CrossRefGoogle Scholar
51.Knusli, C., Delgado, C., Malik, F., and Francis, G.E., Br. J. Haematol. 82 (1982) p. 654.CrossRefGoogle Scholar
52.Whalen, G.F., Shing, Y., and Folkman, J., Growth Factors 1 (1989) p. 157.CrossRefGoogle Scholar
53.Dittrich, F., Thoenen, H., and Sendtner, M., Ann. Neurol. 35 (1994) p. 151.CrossRefGoogle Scholar
54.Cohen, A.M., in Therapeutic Proteins: Pharmacokinetics and Pharmacodynamics, edited by A.Kung, H.C., Baughman, R.A., and Larrick, J.W. (W.H. Freeman and Company, New York, 1993) p. 165.Google Scholar
55.Gutterman, J.U., Rosenblum, M.R., Rios, A., Fritsche, H.A., and Quesada, J.R., Cancer Res. 44 (1984) p. 4164.Google Scholar
56.Konrad, M.W., Hemstreet, G., Hersh, E.M., Mansell, P.W., Mertelsmann, R., Kolitz, J.E., and Bradley, E.C., Ann. Neurol. 50 (1990) p. 2009.Google Scholar
57.Poduslo, J.F., Curran, G.L., and Berg, C.T., Proc. Natl. Acad. Sci. USA 91 (1994) p. 5705.CrossRefGoogle Scholar
58.Zioncheck, T.F., Chen, S.A., Richardson, L., Mora-Worms, M., Lucas, C., Lewis, D., Green, J.D., and Mordenti, J., Pharm. Res. 11 (1994) p. 213.CrossRefGoogle Scholar