Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-27T08:12:33.611Z Has data issue: false hasContentIssue false

Gene Delivery by Immobilization to Cell-Adhesive Substrates

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

Biomaterials can potentially enhance the delivery of viral and nonviral vectors for both basic science and clinical applications.Vectors typically consist of nucleic acids (DNA, RNA) packaged with proteins, lipids, or cationic polymers, which facilitate cellular internalization and trafficking. These vectors can associate with biomaterials that support cell adhesion, a process we term substrate-mediated delivery. Substrate immobilization localizes the DNA and the delivery vector to the cellular microenvironment.The interaction between the vector and substrate must be appropriately balanced to mediate immobilization, yet allow for cellular internalization. Balancing the binding between the biomaterial and the vector is dependent upon the surface chemistries of the material and the vector, which can be designed to provide both specific (e.g., biotin–avidin, the strongest known noncovalent interaction between a protein and its ligand) and nonspecific (e.g., van der Waals) interactions. In this review, we describe the biomaterial and vector properties that mediate binding and gene transfer, identify potential applications, and present opportunities for further development.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Luo, D. and Saltzman, W.M., Nat. Biotechnol. 18 (2000) p. 893CrossRefGoogle Scholar
2.Bengali, Z., Pannier, A.K., Segura, T., Anderson, B.C., Jang, J.-H., Mustoe, T.A., and Shea, L.D., Biotechnol. Bioeng. 90 (2005) p. 290Google Scholar
3.Tseng, W.C., Haselton, F.R., and Giorgio, T.D., J. Biol. Chem. 272 (1997) p. 25641CrossRefGoogle Scholar
4.Varga, C.M., Hong, K., and Lauffenburger, D.A., Mol. Ther. 4 (2001) p. 438CrossRefGoogle Scholar
5.Levy, R.J., Song, C., Tallapragada, S., DeFelice, S., Hinson, J.T., Vyavahare, N., Connolly, J., Ryan, K., and Li, Q., Gene Ther. 8 (2001) p. 659CrossRefGoogle Scholar
6.Segura, T. and Shea, L.D., Bioconjugate Chem. 13 (2002) p. 621CrossRefGoogle Scholar
7.Segura, T., Chung, P.H., and Shea, L.D., Biomaterials 26 (2005) p. 1575CrossRefGoogle Scholar
8.Wilson, C.J., Clegg, R.E., Leavesley, D.I., and Pearcy, M.J., Tissue Eng. 11 (2005) p. 1Google Scholar
9.Norde, W. and Lyklema, J., J. Biomater. Sci., Polym. Ed. 2 (1991) p. 183CrossRefGoogle Scholar
10.Ziauddin, J. and Sabatini, D.M., Nature 411 (2001) p. 107CrossRefGoogle Scholar
11.Chang, F.H., Lee, C.H., Chen, M.T., Kuo, C.C., Chiang, Y.L., Hang, C.Y., and Roffler, S., Nucleic Acids Res. 32 (2004) p. 33Google Scholar
12.Zhang, J.T., Chua, L.S, and Lynn, D.M., Langmuir 20 (2004) p. 8015Google Scholar
13.Bajaj, B., Lei, P., and Andreadis, S.T., Biotechnol. Prog. 17 (2001) p. 587CrossRefGoogle Scholar
14.Shen, H., Tan, J., and Saltzman, W.M., Nat. Mater. 3 (2004) p. 569CrossRefGoogle Scholar
15.Bielinska, A.U., Yen, A., Wu, H.L., Zahos, K.M., Sun, R., Weiner, N.D., Baker, J.R. Jr., and Roessler, B.J., Biomaterials 21 (2000) p. 877CrossRefGoogle Scholar
16.Walter, D.H., Cejna, M., Diaz-Sandoval, L., Willis, S., Kirkwood, L., Stratford, P.W., Tietz, A.B., Kirchmair, R., Silver, M., Curry, C., Wecker, A., Yoon, Y.S., Heidenreich, R., Hanley, A., Kearney, M., Tio, F.O., Kuenzler, P., Isner, J.M., and Losordo, D.W., Circulation 110 (2003) p. 36Google Scholar
17.Barry, M.A., Campos, S.K., Ghosh, D., Adams, K.E., Mok, H., Mercier, G.T., and Parrott, M.B., Expert Opin. Biol. Ther. 3 (2003) p. 925Google Scholar
18.Segura, T., Volk, M.J., and Shea, L.D., J. Controlled Release 93 (2003) p. 69CrossRefGoogle Scholar
19.Pandori, M., Hobson, D., and Sano, T., Virology 299 (2002) p. 204CrossRefGoogle Scholar
20.Klugherz, B.D., Song, C., DeFelice, S., Cui, X., Lu, Z., Connolly, J., Hinson, J.T., Wilensky, R.L., and Levy, R.J., Hum. Gene Ther. 13 (2002) p. 443Google Scholar
21.Abrahams, J.M., Song, C., DeFelice, S., Grady, M.S., Diamond, S.L., and Levy, R.J., Stroke 33 (2002) p. 1376Google Scholar
22.Honma, K., Ochiya, T., Nagahara, S., Sano, A., Yamamoto, H., Hirai, K., Aso, Y., and Terada, M., Biochem. Biophys. Res. Commun. 289 (2001) p. 1075Google Scholar
23.Yoshikawa, T., Uchimura, E., Kishi, M., Funeriu, D.P., Miyake, M., and Miyake, J., J. Controlled Release 96 (2004) p. 227Google Scholar
24.Yamauchi, F., Kato, K., and Iwata, H., Biochim. Biophys. Acta–General Subjects 1672 (2004) p. 138Google Scholar
25.Michiels, F., van Es, H., van Rompaey, L., Merchiers, P., Francken, B., Pittois, K., van der Schueren, J., Brys, R., Vandersmissen, J., Beirinckx, F., Herman, S., Dokic, K., Klaassen, H., Narinx, E., Hagers, A., Laenen, W., Piest, I., Pavliska, H., Rombout, Y., Langemeijer, E., Ma, L., Schipper, C., Raeymaeker, M.D., Schweicher, S., Jans, M., van Beeck, K., Tsang, I.R., van de Stolpe, O., Tomme, P., Arts, G.J., and Donker, J., Nat. Biotechnol. 20 (2002) p. 1154Google Scholar
26.Delehanty, J.B., Shaffer, K.M, and Lin, B.C., Anal. Chem. 76 (2004) p. 7323Google Scholar
27.Stachelek, S.J., Song, C., Alferiev, I., DeFelice, S., Cui, X., Connolly, J.M., Bianco, R.W., and Levy, R.J., Gene Ther. 11 (2004) p. 15Google Scholar
28.Saltzman, W.M. and Olbricht, W.L., Nat. Rev. Drug Discov. 1 (2002) p. 177CrossRefGoogle Scholar