Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-05T07:52:51.035Z Has data issue: false hasContentIssue false

Functional Morphology and Design Constraints of Smooth Adhesive Pads

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

Smooth adhesive pads are found among the arthropods, amphibians (particularly tree frogs), and in some mammals. They are used for dynamic adhesion when an animal is climbing steep or overhanging smooth surfaces. There is a need for strong attachment to avoid falling and easy detachment to enable the animal to move. This article describes the morphology and physical properties of smooth adhesive pads, stressing how there is little variation in structure, within tree frogs at least, even among pads that have evolved independently. This is clear evidence of an optimum design; best adhesion occurs when there is a continuous, thin film of fluid between the pad and the surface. Smooth adhesive pads adhere by wet adhesion, the main force component being capillarity, produced by the air/liquid interface (meniscus) around the edge of each pad. Smooth adhesive pads also produce substantial friction forces, probably because of actual contact between the pad surface and substrate (tree frogs) or non-Newtonian properties of the secreted fluid (insects). This is possible because the fluid layer beneath the pad has an average thickness of only a few nanometers. The article also discusses the scaling of adhesive force with size and, finally, implications for biomimetics.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Cartmill, M., in Functional Vertebrate Morphology, Hildebrand, M., Bramble, D.M., Liem, K.F., Wake, D.B., Eds., (Belknap Press, Cambridge, MA, 1985) pp. 7388.CrossRefGoogle Scholar
2.Riskin, D.K., Fenton, M.B., Can. J. Zool. 79, 2261 (2001).CrossRefGoogle Scholar
3.Santos, R., Gorb, S., Jamar, V., Flammang, P., J. Exp. Biol. 208, 2555 (2005).CrossRefGoogle Scholar
4.Autumn, K. et al., Proc. Natl. Acad. Sci. USA 99, 12252 (2002).CrossRefGoogle Scholar
5.Walker, G., Yue, A., Ratcliffe, J., J. Zool., London 205, 297 (1985).CrossRefGoogle Scholar
6.Gorb, S.N., Proc. R. Soc. London, Ser. B 265, 747 (1998).CrossRefGoogle Scholar
7.Beutel, R.G., Gorb, S.N., J. Zool. Syst. Evol. Res. 39, 177 (2001).CrossRefGoogle Scholar
8.Breidbach, O., Microkosmos 69, 200 (1980).Google Scholar
9.Schliemann, H., Funkt. Biol. Med. 2, 169 (1983).Google Scholar
10.Gorb, S., Attachment Devices of Insect Cuticle (Kluwer Academic, Dordrecht, 2001).Google Scholar
11.Federle, W., Endlein, T., Arthropod Struct. Dev. 33, 67 (2004).CrossRefGoogle Scholar
12.Gorb, S.N., Jiao, Y., Scherge, M., J. Comp. Physiol. A 267, 1239 (2000).Google Scholar
13.Welsch, U., Storch, V., Fuchs, W., Cell Tissue Res. 148, 407 (1974).CrossRefGoogle Scholar
14.Green, D.M., Can. J. Zool. 57, 2033 (1979).CrossRefGoogle Scholar
15.McAllister, A., Channing, L., S. Afr. J. Zool. 18, 110 (1983).Google Scholar
16.Green, D.M., Simon, P., Aust. J. Zool. 34, 135 (1986).CrossRefGoogle Scholar
17.Hanna, G., Barnes, W.J.P., J. Exp. Biol. 155, 103 (1991).CrossRefGoogle Scholar
18.Hertwig, I., Sinsch, U., Copeia 1, 38 (1995).CrossRefGoogle Scholar
19.Mizuhira, V., J. Electron Microsc. (Tokyo) 53, 63 (2004).CrossRefGoogle Scholar
20.Smith, J.M., Barnes, W.J.P., Downie, J.R., Ruxton, G.D., J. Zool. 270, 372 (2006).CrossRefGoogle Scholar
21.Federle, W. et al., J. R. Soc. Interface 3, 689 (2006).CrossRefGoogle Scholar
22.Ernst, V.V., Tissue Cell 5, 83 (1973).CrossRefGoogle Scholar
23.Green, D.M., Alberch, P., J. Morphol. 170, 273 (1981).CrossRefGoogle Scholar
24.Alberch, P., Evolution 35, 84 (1981).Google Scholar
25.Rosenberg, H.I., Rose, R., Can. J. Zool. 77, 233 (1999).CrossRefGoogle Scholar
26.Gorb, S.N., Scherge, M., Proc. R. Soc. London, Ser. B 267, 1239 (2000).CrossRefGoogle Scholar
27.Jiao, Y., Gorb, S., Scherge, M., J. Exp. Biol. 203, 1887 (2000).CrossRefGoogle Scholar
28.Perez-Goodwyn, P. et al., J. Comp. Physiol. A 192, 1233 (2006).CrossRefGoogle Scholar
29.Barnes, W.J.P., Perez-Goodwyn, P., Gorb, S.N., Comp. Biochem. Physiol. 141, S145 (2005).Google Scholar
30.Vogel, S., Comparative Biomechanics: Life's Physical World (Princeton University Press, Princeton, NJ, 2003).Google Scholar
31.Federle, W., Riehle, M., Curtis, A., Full, R., Integr. Comp. Biol. 42, 1100 (2002).CrossRefGoogle Scholar
32.Vötsch, W. et al., Insect Biochem. Mol. Biol. 32, 1605 (2002).CrossRefGoogle Scholar
33.Stefan, J., Sitzber. Akad. Wiss. Wien (Abt. II, Math.-Phys.) 69, 713 (1874).Google Scholar
34.Bickerman, J.J., The Science of Adhesive Joints (Academic Press, New York, 1968).Google Scholar
35.Zhu, L.-Y., IEEE Trans. Magn. 35, 2415 (1999).Google Scholar
36.Barnes, W.J.P., Oines, C., Smith, J.M., J. Comp. Physiol. A 192, 1179 (2006).CrossRefGoogle Scholar
37.Emerson, S.B., Diehl, D., Biol. J. Linnean Soc. 32, 551 (1980).Google Scholar
38.Smith, J.M., Barnes, W.J.P., Downie, J.R., Ruxton, G.D., J. Comp. Physiol. A 192, 1193 (2006).CrossRefGoogle Scholar
39.Barnes, W.J.P., Platter, J., unpublished observations.Google Scholar
40.Arzt, E., personal communication.Google Scholar
41.Johnson, K.L., Kendall, K., Roberts, A.D., Proc. R. Soc. London, Ser. A 324, 301 (1971).Google Scholar
42.Arzt, E., S Gorb, Spolenak, R., Proc. Natl. Acad. Sci. USA, 100, 10603 (2003).CrossRefGoogle Scholar
43.Kendall, K., J. Phys. D: Appl. Phys. 8, 1449 (1975).CrossRefGoogle Scholar
44.Piau, J.M., Ravilly, G., Verdier, C., J. Polym. Sci. Pol. Phys. 43, 145 (2005).CrossRefGoogle Scholar
45.Autumn, K. et al., J. Exp. Biol. 209, 3569 (2006).CrossRefGoogle Scholar
46.Federle, W., Baumgartner, W., Hölldobler, B., J. Exp. Biol. 207, 67 (2004).CrossRefGoogle Scholar
47.Federle, W., Rohrseitz, K., Hölldobler, B., J. Exp. Biol. 203, 505 (2000).CrossRefGoogle Scholar
48.Drechsler, P., Federle, W., J. Comp. Physiol. A 192, 1213 (2006).CrossRefGoogle Scholar
49.Barnes, W.J.P., J. Comp. Physiol. A 192, 1165 (2006).CrossRefGoogle Scholar
50.Autumn, K., Hansen, W., J. Comp. Physiol. A 192, 1205 (2006).CrossRefGoogle Scholar
51.Dahlquist, C.A., in Treatise on Adhesion and Adhesives Vol. 2, Patrick, R.L., Ed. (Dekker, New York, 1969) pp. 219260.Google Scholar
52.Federle, W. et al., Oecologia 112, 217 (1997).CrossRefGoogle Scholar
53.Barnes, W.J.P., Tire Technol. Int., 42 (March 1999).Google Scholar
54.Barnes, W.J.P., Smith, J., Oines, C., Mundl, R., Tire Technol. Int., 56 (December 2002).Google Scholar
55.Gorb, S.N., in Biomimetics: Biologically Inspired Technologies, Bar-Cohen, Y., Ed. (CRC Press, Boca Raton, FL, 2006) pp. 381397.Google Scholar