Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-24T03:13:49.811Z Has data issue: false hasContentIssue false

Fiber Coatings Derived from Molecular Precursors

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

It is generally agreed that the mechanical performance of continuous fiber-reinforced composites will depend to a large extent on the nature of the interface between the fiber and the matrix. In the case of many inorganic composites, compositional and/or morphological gradients can arise over an extended region between the matrix and reinforcing fiber as a result of processing conditions, mechanical forces, or chemical interactions. The term “interphase” has been applied to such a region.

There have been numerous theoretical and experimental treatments of this subject in an effort to quantify the stress and strain in the interphase region, and to correlate the presence of such forces with the mechanical performance of the attendant composites. Much of the experimental work has emphasized controlling the nature of the interphase through careful control of the processing conditions or by the introduction of special interface layers, often by applying a coating to the reinforcing fiber prior to incorporating it into the matrix.

Type
Engineered Interfaces in Composites
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Kerans, R.J., Hay, R.S., Pagano, N.J., and Parthasarathy, T.A., Ceram. Bull. 68 (2) (1989) p. 429.Google Scholar
2.Papanicolaou, G.C., Paipetis, S.A., and Theocaris, P.S., J. Colloid Polymer Sci. 256 (7) (1978) p. 625; K.M. Prewo, in Proc. Fourth Japan-U.S. Conference on Composite Materials (Technomic, Lancaster, PA, 1989) p. 24-40.CrossRefGoogle Scholar
3.Raghava, R.S., J. Reinf. Plastics Comp. 9 (1990) p. 151.CrossRefGoogle Scholar
4.Piggott, M.R., Carbon 27 (5) (1989) p. 657; W.K. Tredway, K.M. Prewo, and C.G. Pantano, Carbon 27 (5) (1989) p. 717; A.S. Argon, V. Gupta, H.S. Landis, and J.A. Cornie, Mat. Sci. Eng. A107 (1989) p. 41; M.K. Brun and R.N. Singh, Adv. Ceram. Mater. 3 (5) (1988) p. 506; T. Pradell, C. Olagnon, and E. Bullock, J. Mater. Sci. Lett. 9 (1990) p. 960; G.P. Tandon and N.J. Pagano, in Proc. Fourth Japan-U.S. Conference on Composite Materials, (Technomic, Lancaster, PA, 1989) p. 191; S.G. Fishman and A.M. Diness, in Proc. Fourth Japan-U.S. Conference on Composite Materials, (Technomic, Lancaster, PA, 1989) p. 209-215.CrossRefGoogle Scholar
5.Maniette, Y. and Oberlin, A., J. Mater. Sci. 25 (1990) p. 3864; S.D. Peteves, P. Tambuyser, P. Heibach, M. Audier, V. Laurent, and D. Chatain, J. Mater. Sci. 25 (8) (1990) p. 3765; K. Nishiyama, S. Umekawa, M. Yuasa, and I. Fukumoto, in Proc. Fourth Japan-U.S. Conference on Composite Materials (Technomic, Lancaster, PA, 1989) p. 776-788; C. Jones, C.J. Kiely, and S.S. Wang, J. Mater. Res. 4 (2) (1989) p. 327; 5 (7) (1990) p. 1435; S.J. Baker and W. Bonfield, J. Mater. Sci. 13 (1978) p. 1329.CrossRefGoogle Scholar
6.Singh, R.N., J. Am. Ceram. Soc. 72(9) (1989) p. 1764; R.N. Singh and M.K. Brun, Adv. Ceram. Mater. 3 (3) (1988) p. 235; R.P. Boisvert, R.K. Hutter, and R.J. Dietendorf, in Proc. Fourth Japan-U.S. Conference on Composite Materials (Technomic, Lancaster, PA, 1989) p. 789-798.CrossRefGoogle Scholar
7.Abraham, S., Pai, B.C., Satyanarayana, K.G., and Vaidyan, V.K., in Interfacial Phenomena in Composite Materials '89 edited by Jones, F.R. (Butterworths, Boston, MA, 1989) p. 276281.Google Scholar
8.Aggour, L., Fitzer, E., Ignotowitz, E., Sahebkar, M., Carbon 12 (1974) p. 358; Vapor Deposition, edited by C.F. Powell, J.H. Oxley, and J.M. Blocher (Wiley and Sons, New York, 1966).CrossRefGoogle Scholar
9.Streckert, H.H., Montgomery, F.C., Tilley, T.D., Campion, B.K., and Heyn, R.H., in Ultrastructure Processing of Advanced Ceramics, edited by Mackenzie, J.D. and Ulrich, D.R. (Wiley & Sons, New York, 1988) p. 963972.Google Scholar
10.Fukunaga, H. and Goda, K., in Proc. Fourth Japan-U.S. Conference on Composite Materials (Technomic, Lancaster, PA, 1989) p. 653660; L. Hwan, S. Suib, J. Am. Ceram. Soc. 72 (7) (1989) p. 1259.Google Scholar
11.Rand, B., in Interfacial Phenomena in Composite Materials '89, edited by Jones, F.R. (Butterworths, Boston, MA, 1989) p. 1524. Also see references 1-8.Google Scholar
12.Strife, J.R., Sheehan, J.E., Ceram. Bull. 67 (2) (1988) p. 369; Y. Deslandes and F.N. Sabir, J. Mater. Sci. Lett. 9(2) (1990) p. 200.Google Scholar
13.Sim, S.M., Chu, P-Y., Krabill, R.H., and Clark, D.E., in Ultrastructure Processing of Advanced Ceramics, edited by Mackenzie, J.D. and Ulrich, D.R. (Wiley & Sons, New York, 1988) p. 9951010.Google Scholar
14.Peuckert, M., Vaahs, T., and Bruck, M., Adv. Mater. 2 (9) (1990) p. 398.CrossRefGoogle Scholar
15.Okamoto, M., Yokoyama, H., and Osaka, Y., Jpn. J. Appl. Phys. 29 (5) (1990) p. 930; H. Vincent, M. Boubehira, J. Bouix, C. Bernard, and A. Roche, J. Crystal Growth 75 (1986) p. 504.CrossRefGoogle Scholar
16.Weisweiler, W., Fitzer, E., Nagel, G., and Jager, H., Thin Solid Films 148 (1987) p. 93.CrossRefGoogle Scholar
17.Cranmer, D.C., Ceram. Bull. 68 (2) (1989) p. 415.Google Scholar
18.Interrante, L.V., Sigei, G.A., Garbauskas, M., Hejna, C., and Slack, G.A., Inorg. Chem. 28 (2), (1989) p. 252; L.V. Interrante, W. Lee, M. McConnell, N. Lewis, and G.A. Slack, J. Electrochem. Soc. 136 (1989) p. 472.CrossRefGoogle Scholar
19.Mond, L., Langer, C., and Quinke, F., J. Chem. Soc. London 57 (1890) p. 749; H.E. Carlton, and W.M. Goldberger, J. Met. 17 (1965) p. 611; R. Kaplan and N. Bottka, Appl. Phys. Lett. 41 (1982) p. 972; R. Kaplan, J. Vac. Sci. Technol. A 1 (1983) p. 551; J.S. Foord and R.B. Jackman, Chem. Phys. Lett. 112 (1984) p. 190.CrossRefGoogle Scholar
20.Varma, S., Kim, Y.G., Psenicnik, Z., Dowben, P.A., and Birge, R.R., in Protective Coatings: Processing and Characterization, edited by Yazici, R.M. (TMS, Warrendale, PA, 1989) p. 101110.Google Scholar
21.Dowben, P.A., Spencer, J.T., and Stauf, G.T., Mater. Sci. Eng. B2 (1989) p. 297; Tungsten and Other Refractory Metals for VLSI Applications, Vol. III, edited by V.A. Wells (Mater. Res. Soc, Pittsburgh, PA, 1988), and Vol. IV, edited by R.S. Biewer and C.M. McConica (1989).CrossRefGoogle Scholar
22.Cooke, M.J., Heinecke, R.A., Stern, R.C., and Maes, J.W., Solid State Technol. 25 (12) (1982) p. 62; R.A. Levy and M.L. Green, I. Electrochem. Soc. 134 (1987) p. 37C.Google Scholar
23.Houle, F.A., Jones, C.R., Baum, T.H., Pico, C., and Kovac, C.A., Appl. Phys. Lett. 46 (1985) p. 204; C. Oehrand and H. Suhr, Appl. Phys. A 45 (1988) p. 151.CrossRefGoogle Scholar
24.Beach, D.B., LeGoues, F.K., and Hu, C.K., Chem. Mater. 2 (1990) p. 216.CrossRefGoogle Scholar
25.Jeffries, P.M. and Girolami, G.S., Chem. Mater. 1 (1989) p. 8.CrossRefGoogle Scholar
26.Geol, S.C., Kramer, K.S., Chiang, M.Y., and Buhro, W., Polyhedron 9 (1990) p. 611.CrossRefGoogle Scholar
27.Shin, H.K., Chi, K.M., Hampden-Smith, M.J., Kodas, T.T., Farr, J.D., and Paffett, M.F., “Synthesis of New Copper(I) B-Diketonate Compounds For CVD of Copper” in Chemical Perspectives of Microelectronic Materials — II, edited by Dubois, L.H., Interrante, L.V., Gross, M.E., and Jensen, K.F. (Mater. Res. Soc. Symp. Proc., 204, Pittsburgh, PA, 1991) p. 421.Google Scholar
28.Koplitz, L.V., Shuh, C.K., Chen, Y.J., Williams, R.S., and Zink, J.I., Appl. Phys. Lett. 53 (18) (1988) p. 1705.CrossRefGoogle Scholar
29.Kumar, R., Roy, S., Rashidi, M., and Puddephat, R.J., Polyhedron 8 (1989) p. 551; S. Roy, R.J. Puddephat, and J.D. Scott, J. Chem. Soc. Dalton Trans. (1989) p. 2121.CrossRefGoogle Scholar
30.Puddephat, R.J. and Treuernicht, I., J. Organomet. Chem. 319 (1987) p. 129.CrossRefGoogle Scholar
31.Nemoto, M. and Yamanaka, M., J. Mater. Res. 5 (1990) p. 1; K. Wanatabe, H. Yamane, H. Kurasawa, T. Hirai, N. Kobayashi, H. Iwasake, K. Noto, and Y. Muto, Appl. Phys. Lett. 54 (1989) p. 575; A.P. Purdy, A.D. Berry, R.T. Holm, M. Fatemi, and D.K. Gaskill, Inorg. Chem. 28 (1989); A.D. Berry, R.T. Holm, M. Fatemi, D.K. Gaskill, R. Kaplan, and W.B. Fox, J. Cryst. Growth. 92 (1988) p. 344; J. Zhao, K.H. Dahmen, H.O. Marcy, L.M. Tonge, T.J. Marks, B.W. Wessels, and C.R. Kannewurf, Phys. Lett. 53 (1988) p. 1548.CrossRefGoogle Scholar
32.Bradley, D.C., Chem. Rev. 89 (1989) p. 1317; C.C. Bradley, Philos. Trans. R. Soc. Land., Ser. A 330 (1990) p. 167.CrossRefGoogle Scholar
33.Saraie, J., Kwon, J., and Yodogawa, Y., J. Electrochem. Soc. 132(4) (1985) p. 890.CrossRefGoogle Scholar
34.Seivers, R.E., Eisentraut, K.J., Springer, C.S. Jr., and Meek, D.W., in Lanthanidel Actinide Chemistry, Advances in Chemistry Series, Vol. 71 (American Chemical Society, 1967) p. 141154; E.W. Berg and J.J. Chiang-Acosta, Ann. Chim. Acta. 40 (1968) p. 101; A.P. Purdy, A.D. Berry, R.T. Holm, M. Fatemi, and D.K. Gaskill, Inorg. Chem. 28 (1989) p. 2799.Google Scholar
35.Kamata, K., Matsumato, S., and Shibata, Y., Yogya Kyokaishi 90 (1) (1982) p. 46; A.D. Berry, D.K. Gaskill, R.T. Holm, E.J. Cukauskas, R. Kaplan, and R.L. Henry, Appl. Phys. Lett. 52 (20) (1988) p. 1743; V.A. Varyukhin, V.Y. Vodzinskiy, V.A. Domrachev, B.I. Kozyrkin, V.V. Kutyreva, and O.N. Suvorova, in Probl. Khim. Primen. Beta-Diketonatov Met., 1st edition, edited by V. Spitsyn (1982) p. 178-84.Google Scholar
36.Matsuno, S., Uchikawa, F., Yoshizaki, K., Ipn. J. Appl. Phys., Part 2 29 (6), (1990) L947; A.R. Barron, J.M. Buriak, L. Cheatham, and R. Gordon, in Electrochemical Society 177th Meeting, Abstract 943 HTS, Montreal, Quebec, Canada; T.H. Geballe, A. Sanjurjo, D. Hildenbrand, G. Craig, M. Zisk, J. Coliman, S.A. Banning, and R.E. Sievers, J. Appl. Phys. 66 (1989) p. 444.CrossRefGoogle Scholar
37.Bradley, D.C. and Faktor, M.M., Trans. Faraday Soc. 55 (1959) p. 2117.CrossRefGoogle Scholar
38.Politychi, A. and Hierher, K., in Sci. Technol. Surf. Coat., NATO Adv. Study Inst., edited by Chapman, B.N. and Anderson, J.C (Academic Publishing, London, 1972) p. 159168.Google Scholar
39.Wang, C.C., Zaninger, K.H., and Duffy, M.T., RCA Rev. 31 (1970) p. 728.Google Scholar
40.Delperier, B., Maury, F., Calsou, R., Morancho, R., Proc. 10th International Conf. on CVD (Proc. Electrochemical Society, 87-88, 1987) p. 1139–46.Google Scholar
41.Larkin, D.J., Interrante, L.V., and Bose, A., J. Mater. Sci. 5 (11) (1990) p. 2706.Google Scholar
42.Paine, R.T. and Narula, C.K., Chem. Rev. 90 (1) (1990) p. 73.CrossRefGoogle Scholar
43.Mirabelli, M.G.L., Lynch, A., Sneddon, L.G., Solid State Ionics 32/33 (1989) p. 655.CrossRefGoogle Scholar
44.Rand, M.H. and Roberts, J.F., J. Electrochem. Soc. 115 (4) (1968) p. 423, and references therein.CrossRefGoogle Scholar
45.Pease, R.S., Acta Crystallogr. 5 (1952) p. 356.CrossRefGoogle Scholar
46.Beck, J.S., Albani, C.R., McGhie, A.R., Rothman, J.B., and Sneddon, L.G., Chem. Mater. 1 (4) (1990) p. 433.CrossRefGoogle Scholar
47.Lynch, A.T. and Sneddon, L.G., J. Am. Chem. Soc. 111 (16) (1989) p. 6201.CrossRefGoogle Scholar
48.Fazen, P.J., Beck, J.S., Lynch, A.T., Remsen, E.E., and Sneddon, L.G., Chem. Mater. 2 (2) (1990) p. 96.CrossRefGoogle Scholar
49.Narula, C.K., Schaeffer, R., Datye, A.K., Borek, T.T., Rapko, B.M., and Paine, R.T., Chem Mater. 2 (4) (1990) p. 384; R.T. Paine, C.K. Narula, R. Schaeffer, and A.K. Datye, Chem Mater. 1 (5) (1989) p. 486.CrossRefGoogle Scholar
50.Narula, C.K., Lindquist, D.A., Fan, M., Borek, T.T., Duesler, E.N., Datye, A.K., Schaeffer, R., and Paine, R.T., Chem Mater. 2 (4) (1990) p. 377.CrossRefGoogle Scholar
51.Doo, V.Y., Kerr, D.R., and Nichols, D.R., J. Electrochem. Soc. 115 (1) (1968) p. 61.CrossRefGoogle Scholar
52.Beatty, C.L., in Ultrastructure Processing of Ceramics, Glasses, and Composites, edited by Hench, L.L. and Ulrich, D.R. (Wiley & Sons, New York, 1984) p. 272–91; D. Seyferth and G.H. Wiseman, in Ultrastructure Processing of Ceramics, Glasses, and Composites, edited by L.L. Hench and D.R. Ulrich (Wiley & Sons, New York, 1984) p. 265-71.Google Scholar
53.Fix, R.M., Gordon, R.G., Hoffman, D.M., Chem. Mater. 2 (3) (1990) p. 235.CrossRefGoogle Scholar
54.Blum, Y.D., Platz, R.M., Crawford, E.J., J. Am. Ceram. Soc. 73 (1) (1990) p. 170; S.J. Lenhart, Y.D. Blum, R.M. Laine, Corrosion 45 (6) (1989) p. 503.CrossRefGoogle Scholar
55.Sugiyama, K., Pac, S., Takahashi, Y., Motojima, S., J. Electrochem. Soc. 22 (11) (1975) p. 1545.CrossRefGoogle Scholar
56.Gordon, R.G., Hoffman, D.M., and Riaz, U., Chem. Mater. 2 (5) (1990) p. 480; R.G. Gordon, D.M. Hoffman, and U. Riaz, “Atmospheric Pressure Chemical Vapor Deposition of Main-Group Nitride Thin Films,” in Chemical Perspectives of Microelectronic Materials - II, edited by L.H. Dubois, L.V. Interrante, M.E. Gross, and K.F. Jensen (Mater. Res. Soc. Symp. Proc. 204, 1991), p. 95.CrossRefGoogle Scholar
57.Fix, R.M., Gordon, R.G., Hoffman, D.M., J. Am. Chem. Soc. 112 (21) (1990) p. 7833; also see reference 56b.CrossRefGoogle Scholar
58.Boyd, D.C., Haasch, R.T., Mantell, D.R., Schulze, R.K., Evans, J.F., and Gladfelter, W.L., Chem Mater. 1 (1) (1989) p. 119.CrossRefGoogle Scholar
59.Hwang, J.W., Hanson, S.A., Britton, D., Evans, J.F., Jensen, K.F., and Gladfelter, W.L., Chem. Mater. 2 (3) (1990) p. 342.CrossRefGoogle Scholar
60.Jiang, Z. and Interrante, L.V., Chem Mater. 2 (4) (1990) p. 439.CrossRefGoogle Scholar
61.Seibold, M.M. and Russel, C., J. Am. Ceram. Soc. 72 (8) (1989) p. 1503; I. Teusel and C. Russel, J. Mater. Sci. 25 (8) (1990) p. 3531.CrossRefGoogle Scholar
62.O'Neal, H.E. and Ring, M.A., J. Organomet. Chem. 213 (1981) p. 419.CrossRefGoogle Scholar
63.Larkin, D.J., Interrante, L.V., Hudson, J.B., and Han, B., in Mater. Res. Soc. Symp. Proc. 204 (1991) p. 141.CrossRefGoogle Scholar
64.Lee, W., Interrante, L.V., Czekaj, C., Hudson, J., Lenz, K., and Sun, B., in Mat. Res. Soc. Symp. Proc. 131 (1989) p. 431; H.E. Fischer, L.V. Interrante, unpublished work.CrossRefGoogle Scholar
65.Yajima, S., Okamura, K., Hayashi, J., and Omori, M., J. Am. Ceram. Soc. 59 (1976) p. 324; Chem. Lett. (1975) p. 1209.CrossRefGoogle Scholar
66.Schilling, C.L. Jr., Br. Polym. J. 18 (6) (1985) p. 355; C.L. Schilling Jr., J.P. Wesson, T.C Williams, J. Polym. Sci. Polym. 70 (1983) p. 121; R.H. Baney, J.H. Gaul Jr., and T.K. Hilty, Organometal. 2 (1982) p. 859; L.M. Niebyiski, U.S. Patent 4,873,353 (1989); Katzman, U.S. Patent 4,737,382 (1988); R.H. Baney, Brit. U.K. Patent Appl., GB 2021545 (Dec. 5, 1979).CrossRefGoogle Scholar
67.Girolami, G.S., Jensen, J.A., Pollina, D.M., Williams, W.S., Kaloyeros, A.E., and Allocca, C.M., J. Am. Chem. Soc. 109 (1987) p. 1579; C.M. Alloca, W.S. Williams, A.E. Kaloyeros, J. Electrochem. Soc. 134 (12) (1987) p. 3170.CrossRefGoogle Scholar
68.Jensen, J.A., Gozum, J.E., Pollina, D.M., and Girolami, G.S., J. Am. Chem. Soc. 110 (5) (1988) p. 1643.CrossRefGoogle Scholar
69.Du, H., Gallois, B., and Gonsalves, K.E., Chem. Mater. 1 (6) (1989) p. 569.CrossRefGoogle Scholar
70.Morancho, R., Constant, G., and Ehrhardt, J.J., Thin Solid Films 77 (1981) p. 155.CrossRefGoogle Scholar
71.Yazici, R., Gonsalves, K., and Han, S., in Protective Coatings: Processing and Characterization, edited by Yazici, R.M. (TMS, Warren-dale, PA, 1989) p. 91100.Google Scholar