Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-24T12:26:31.789Z Has data issue: false hasContentIssue false

Ferroelectric Thin Films in Micro-electromechanical Systems Applications

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

Ferroelectric ceramic thin films fit naturally into the burgeoning field of microelectromechanical systems (MEMS). Microelectromechanical systems combine traditional Si integrated-circuit (IC) electronics with micromechanical sensing and actuating components. The term MEMS has become synonymous with many types of microfabricated devices such as accelerometers, infrared detectors, flow meters, pumps, motors, and mechanical components. These devices have lateral dimensions in the range of 10 μm–10 mm. The ultimate goal of MEMS is a self-contained system of interrelated sensing and actuating devices together with signal processing and control electronics on a common substrate, most often Si. Since fabrication involves methods common to the IC industry, MEMS can be mass-produced. Commercial applications for MEMS already span biomedical (e.g., blood-pressure sensors), manufacturing (e.g., microflow controllers), information processing (e.g., displays), and automotive (e.g., accelerometers) industries. More applications are projected in consumer electronics, manufacturing control, communications, and aerospace. Materials for MEMS include traditional microelectronic materials (e.g., Si, SiO2, Si3N4, polyimide, Pt, Al) as well as nontraditional ones (e.g., ferroelectric ceramics, shapememory alloys, chemical-sensing materials). The superior piezoelectric and pyroelectric properties of ferroelectric ceramics make them ideal materials for microactuators and microsensors.

Type
Electroceramic Thin Films Part II: Device Applications
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Frazier, A.B., Warrington, R.O., and Fredrich, C., IEEE Trans. Ind. Electron. 42 (1995) p. 423.CrossRefGoogle Scholar
2.Polla, D.L., Microelectronic Engin. 29 (1995) p. 51.CrossRefGoogle Scholar
3.O'Connor, L., Mech. Engin. (May 1993) p. 62.Google Scholar
4.Scott, W.B., Aviation Week and Space Technol. (March 1, 1993) p. 36.Google Scholar
5.Jaffe, B., Cook, W.R., and Jaffe, H., Piezoelectric Ceram. (R.A.N. Publishers, Marietta, OH, 1971).Google Scholar
6.Ye, C., Tamagawa, T., Schiller, P., and Polla, D.L., Sensors and Actuators A 35 (1992) p. 77.CrossRefGoogle Scholar
7.Sayer, M., Kumar, C.V.R. Vasant, Barrow, D., Zou, L., and Amm, D.T., in Ferroelectric Thin Films II, edited by. Kingon, A.I., Myers, E.R., and Tuttle, B. (Mater. Res. Soc. Symp. Proc. 243, Pittsburgh, 1992) p. 39.Google Scholar
8.Muralt, P., Kohli, M., Maeder, T., Kholkin, A., Brooks, K., Setter, N., and Luthier, R., Sensors and Actuators A 48 (1995) p. 157.CrossRefGoogle Scholar
9.Flynn, A.M., Tavrow, L.S., Bart, S.F., Brooks, R.A., Ehrlich, D.H., Udayakumar, K.R., and Cross, L.E., J. Microelectromech. Sys. 1 (1992) p. 44.CrossRefGoogle Scholar
10.Hsueh, C-C., Tamagawa, T., Ye, C., Helgeson, A., and Polla, D.L., Integrated Ferroelectrics 3 (1993) p. 21.CrossRefGoogle Scholar
11.Sreenivas, K., Reaney, I., Maeder, T., Setter, N., Jagadish, C., and Elliman, R.G., J. Appl. Phys. 75 (1994) p. 232.CrossRefGoogle Scholar
12.Cooney, T.G., Glumac, D.E., Robbins, W.P., and Francis, L.F., in Ferroelectric Thin Films IV, edited by Tuttle, B.A., Desu, S.B., Ramesh, R., and Shiosaki, T. (Mater. Res. Soc. Symp. Proc. 361, Pittsburgh, 1995) p. 401.Google Scholar
13.Wright, J.S., Schwartz, J.M., Schmidt, L.D., and Francis, L.F., J. Am. Ceram. Soc. 78 (1995) p. 2360.CrossRefGoogle Scholar
14.Berstein, S.D., Wong, T.Y., Kisler, Y., and Tustison, R.W., J. Mater. Res. 8 (1993) p. 13.Google Scholar
15.Tuttle, B.A. and Schwartz, R.W., MRS Bulletin 21 (6) (1996).CrossRefGoogle Scholar
16.Budd, K.D., Dey, S.K., and Payne, D.A., Br. Ceram. Proc. 36 (1985) p. 107.Google Scholar
17.Lin, C.T., Scanlan, B.W., McNeill, J.D., Webb, J.S., Li, L., Lipeles, R.A., Adams, P.M., and Leung, M.S., J. Mater. Res. 7 (1992) p. 2546.CrossRefGoogle Scholar
18.Cooney, T.G. and Francis, L.F., J. Micromech. Microeng. (to be published).Google Scholar
19.Schiller, P. and Polla, D.L., 7th Int. Conf. Solid-State Sensors and Actuators (Yokohama, Japan, June 1993).Google Scholar
20.Blow, B., Polla, D.L., Harjani, R., and Tamagawa, T., IEEE VLSI Circuits Symposium, May 1993; J-H. Kim, L. Wang, L. Li, S. Zurn, and D.L. Polla, Proc. 8th Int. Symp. Integrated Ferroelectrics (Phoenix, AZ, March 1996).Google Scholar
21.Kim, E.S. and Muller, R.S., IEEE Electron Dev. Lett. EDL-8 (1987) p. 467; R.P. Reid, E.S. Kim, D.M. Hong, and R.S. Muller, J. Microelectromech. Sys. 2 (1993) p. 111.Google Scholar
22.Polla, D.L. and Francis, L.F., 7th U.S.-Jpn. Seminar Dielectric and Piezoelectric Ceram. (Tsukuba, Japan, November 1995).Google Scholar
23.Polla, D.L., Ye, C., and Tamagawa, T., Appl. Phys. Lett. 59 (1991) p. 3539.CrossRefGoogle Scholar
24.Ye, C., Tamagawa, T., Schiller, P., and Polla, D.L., Sensors and Actuators A 35 (1992) p. 77.CrossRefGoogle Scholar
25.Pham, L. and Polla, D.L., IEEE Trans. on Ultrason., Ferroelectrics, and Frequency Control, vol. UFFC-41 (1994) p. 552.CrossRefGoogle Scholar
26.Robbins, W.P., “Proc. 7th Int. Symp. Integrated Ferroelectrics,” Integrated Ferroelectrics (1996) in press.Google Scholar
27.Judy, J.W., Polla, D.L., and Robbins, W.P., IEEE Trans. Ultrasonics, Ferroelectrics, and Frequency Control, vol. UFFC-37 (1990) p. 428.CrossRefGoogle Scholar
28.Peichel, D.J., Markus, D., Rho, K., and Polla, D.L. (unpublished manuscript).Google Scholar