Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-23T06:18:26.623Z Has data issue: false hasContentIssue false

Femtosecond laser patterning, synthesis, defect formation, and structural modification of atomic layered materials

Published online by Cambridge University Press:  06 December 2016

Jae-Hyuck Yoo
Affiliation:
Lawrence Livermore National Laboratory, USA; [email protected]
Eunpa Kim
Affiliation:
Samsung Electronics, South Korea; [email protected]
David J. Hwang
Affiliation:
Department of Mechanical Engineering, State University of New York at Stony Brook, USA; [email protected]
Get access

Abstract

This article summarizes recent research on laser-based processing of two-dimensional (2D) atomic layered materials, including graphene and transition-metal dichalcogenides (TMDCs). Ultrafast lasers offer unique processing routes that take advantage of distinct interaction mechanisms with 2D materials to enable extremely localized energy deposition. Experiments have shown that ablative direct patterning of graphene by ultrafast lasers can achieve resolutions of tens of nanometers, as well as single-step pattern transfer. Ultrafast lasers also induce non-thermal excitation mechanisms that are useful for the thinning of TMDCs to tune the 2D material bandgap. Laser-assisted site-specific doping was recently demonstrated and ultrafast laser radiation under ambient air environment could be used for the direct writing of high-quality graphene patterns on insulating substrates. This article concludes with an outlook on developing further advanced laser processing with scalability, in situ monitoring strategies, and potential applications.

Type
Research Article
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Novoselov, K.S., Fal’ko, V.I., Colombo, L., Gellert, P.R., Schwab, M.G., Kim, K., Nature 490 (7419), 192 (2012).CrossRefGoogle Scholar
Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V., Kis, A., Nat. Nanotechnol. 6 (3), 147 (2011).CrossRefGoogle Scholar
Yoon, Y., Ganapathi, K., Salahuddin, S., Nano Lett. 11 (9), 3768 (2011).CrossRefGoogle Scholar
Castellanos-Gomez, A., Barkelid, M., Goossens, A.M., Calado, V.E., van der Zant, H.S.J., Steele, G.A., Nano Lett. 12 (6), 3187 (2012).CrossRefGoogle Scholar
van der Zande, A.M., Huang, P.Y., Chenet, D.A., Berkelbach, T.C., You, Y.M., Lee, G.H., Heinz, T.F., Reichman, D.R., Muller, D.A., Hone, J.C., Nat. Mater. 12 (6), 554 (2013).CrossRefGoogle Scholar
Currie, M., Caldwell, J.D., Bezares, F.J., Robinson, J., Anderson, T., Chun, H.D., Tadjer, M., Appl. Phys. Lett. 99 (21), 211909 (2011).CrossRefGoogle Scholar
Lenner, M., Kaplan, A., Huchon, C., Palmer, R.E., Phys. Rev. B Condens. Matter 79 (18), 184105 (2009).CrossRefGoogle Scholar
Lenner, M., Kaplan, A., Palmer, R.E., Appl. Phys. Lett. 90 (15), 153119 (2007).CrossRefGoogle Scholar
Stohr, R.J., Kolesov, R., Xia, K.W., Wrachtrup, J., ACS Nano 5 (6), 5141 (2011).CrossRefGoogle Scholar
Paradisanos, I., Kymakis, E., Fotakis, C., Kioseoglou, G., Stratakis, E., Appl. Phys. Lett. 105 (4), 041108 (2014).CrossRefGoogle Scholar
Komsa, H.P., Kotakoski, J., Kurasch, S., Lehtinen, O., Kaiser, U., Krasheninnikov, A.V., Phys. Rev. Lett. 109 (3), 035503 (2012).CrossRefGoogle Scholar
Wang, K.P., Wang, J., Fan, J.T., Lotya, M., O’Neill, A., Fox, D., Feng, Y.Y., Zhang, X.Y., Jiang, B.X., Zhao, Q.Z., Zhang, H.Z., Coleman, J.N., Zhang, L., Blau, W.J., ACS Nano 7 (10), 9260 (2013).CrossRefGoogle Scholar
Wei, D.P., Mitchell, J.I., Tansarawiput, C., Nam, W., Qi, M.H., Ye, P.D.D., Xu, X.F., Carbon 53, 374 (2013).CrossRefGoogle Scholar
Pirkle, A., Chan, J., Venugopal, A., Hinojos, D., Magnuson, C.W., McDonnell, S., Colombo, L., Vogel, E.M., Ruoff, R.S., Wallace, R.M., Appl. Phys. Lett. 99 (12), 122108 (2011).CrossRefGoogle Scholar
Cheng, Z.G., Zhou, Q.Y., Wang, C.X., Li, Q.A., Wang, C., Fang, Y., Nano Lett. 11 (2), 767 (2011).CrossRefGoogle Scholar
Yoo, J.H., In, J.B., Park, J.B., Jeon, H.J., Grigoropoulos, C.P., Appl. Phys. Lett. 100 (23), 233124 (2012).CrossRefGoogle Scholar
Park, J.B., Yoo, J.H., Grigoropoulos, C.P., Appl. Phys. Lett. 101 (4), 043110 (2012).CrossRefGoogle Scholar
Yoo, J.H., Park, J.B., Ahn, S., Grigoropoulos, C.P., Small 9 (24), 4269 (2013).CrossRefGoogle Scholar
Han, M.Y., Ozyilmaz, B., Zhang, Y.B., Kim, P., Phys. Rev. Lett. 98 (20), 206805 (2007).CrossRefGoogle Scholar
Wang, Q.H., Kalantar-Zadeh, K., Kis, A., Coleman, J.N., Strano, M.S., Nat. Nanotechnol. 7 (11), 699 (2012).CrossRefGoogle Scholar
Han, G.H., Chae, S.J., Kim, E.S., Gunes, F., Lee, I.H., Lee, S.W., Lee, S.Y., Lim, S.C., Jeong, H.K., Jeong, M.S., Lee, Y.H., ACS Nano 5 (1), 263 (2011).CrossRefGoogle Scholar
Zhou, Y., Bao, Q.L., Varghese, B., Tang, L.A.L., Tan, C.K., Sow, C.H., Loh, K.P., Adv. Mater. 22 (1), 67 (2010).CrossRefGoogle Scholar
Zhang, Y.L., Guo, L., Wei, S., He, Y.Y., Xia, H., Chen, Q.D., Sun, H.B., Xiao, F.S., Nano Today 5 (1), 15 (2010).CrossRefGoogle Scholar
Park, J.B., Xiong, W., Gao, Y., Qian, M., Xie, Z.Q., Mitchell, M., Zhou, Y.S., Han, G.H., Jiang, L., Lu, Y.F., Appl. Phys. Lett. 98 (12), 123109 (2011).CrossRefGoogle Scholar
Park, J.B., Xiong, W., Xie, Z.Q., Gao, Y., Qian, M., Mitchell, M., Mahjouri-Samani, M., Zhou, Y.S., Jiang, L., Lu, Y.F., Appl. Phys. Lett. 99 (5), 053103 (2011).CrossRefGoogle Scholar
Xiong, W., Zhou, Y.S., Hou, W.J., Jiang, L.J., Gao, Y., Fan, L.S., Jiang, L., Silvain, J.F., Lu, Y.F., Sci. Rep. 4, 4892 (2014).CrossRefGoogle Scholar
Giovannetti, G., Khomyakov, P.A., Brocks, G., Karpan, V.M., van den Brink, J., Kelly, P.J., Phys. Rev. Lett. 101 (2), 026803 (2008).CrossRefGoogle Scholar
Rigo, V.A., Martins, T.B., da Silva, A.J.R., Fazzio, A., Miwa, R.H., Phys. Rev. B Condens. Matter 79 (7), 075435 (2009).CrossRefGoogle Scholar
Xiong, W., Zhou, Y.S., Jiang, L.J., Sarkar, A., Mahjouri-Samani, M., Xie, Z.Q., Gao, Y., Ianno, N.J., Jiang, L., Lu, Y.F., Adv. Mater. 25 (4), 630 (2013).CrossRefGoogle Scholar
Bin In, J., Hsia, B., Yoo, J.H., Hyun, S., Carraro, C., Maboudian, R., Grigoropoulos, C.P., Carbon 83, 144 (2015).CrossRefGoogle Scholar
Choi, I., Jeong, H.Y., Jung, D.Y., Byun, M., Choi, C.G., Hong, B.H., Choi, S.Y., Lee, K.J., ACS Nano 8 (8), 7671 (2014).CrossRefGoogle Scholar
Savva, K., Lin, Y.H., Petridis, C., Kymakis, E., Anthopoulos, T.D., Stratakis, E., J. Mater. Chem. C 2 (29), 5931 (2014).CrossRefGoogle Scholar
Guo, L., Zhang, Y.L., Han, D.D., Jiang, H.B., Wang, D., Li, X.B., Xia, H., Feng, J., Chen, Q.D., Sun, H.B., Adv. Opt. Mater. 2 (2), 120 (2014).CrossRefGoogle Scholar
Kim, E., Ko, C., Kim, K., Chen, Y.B., Suh, J., Ryu, S.G., Wu, K.D., Meng, X.Q., Suslu, A., Tongay, S., Wu, J.Q., Grigoropoulos, C.P., Adv. Mater. 28 (2), 341 (2016).CrossRefGoogle ScholarPubMed
Ryu, S.G., Kim, E., Hwang, D.J., Grigoropoulos, C.P., Appl. Phys. A 121 (1), 255 (2015).CrossRefGoogle Scholar
Grigoropoulos, C.P., Hwang, D.J., Chimmalgi, A., MRS Bull. 32 (1), 16 (2007).CrossRefGoogle Scholar
Hwang, D., Ryu, S.G., Misra, N., Jeon, H., Grigoropoulos, C.P., Appl. Phys. A 96 (2), 289 (2009).CrossRefGoogle Scholar
Ohtsu, M., Kobayashi, K., Ito, H., Lee, G.H., Proc. IEEE 88 (9), 1499 (2000).CrossRefGoogle Scholar
Pan, H., Hwang, D.J., Ko, S.H., Clem, T.A., Frechet, J.M.J., Bauerle, D., Grigoropoulos, C.P., Small 6 (16), 1812 (2010).CrossRefGoogle Scholar
In, J.B., Ryu, S.G., Lee, D., Ahn, S., Zheng, A.C., Hwang, D.J.S., Grigoropoulos, C.P., “Laser Material Processing for Solar Energy Devices II,” Proc. SPIE 8826, 88260E (2013).CrossRefGoogle Scholar
Xiang, B., Hwang, D.J., Bin In, J., Ryu, S.G., Yoo, J.H., Dubon, O., Minor, A.M., Grigoropoulos, C.P., Nano Lett. 12 (5), 2524 (2012).CrossRefGoogle Scholar
Hwang, D.J., Xiang, B., Ryu, S.G., Dubon, O., Minor, A.M., Grigoropoulos, C.P., Appl. Phys. A 105 (2), 317 (2011).CrossRefGoogle Scholar
Allen, F.I., Kim, E., Ryu, S.-G., Ozdol, B., Grigoropoulos, C.P., Minor, A.M., Microsc. Microanal. 19, 394 (2013).CrossRefGoogle Scholar
Allen, F.I., Kim, E., Andresen, N.C., Grigoropoulos, C.P., Minor, A.M., Ultramicroscopy (2016), http://www.sciencedirect.com/science/journal/aip/03043991.Google Scholar