Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-24T11:07:42.159Z Has data issue: false hasContentIssue false

Extremes of heat conduction―Pushing the boundaries of the thermal conductivity of materials

Published online by Cambridge University Press:  12 September 2012

David G. Cahill*
Affiliation:
University of Illinois at Urbana-Champaign; [email protected]
Get access

Abstract

Thermal conductivity is a familiar property of materials: silver conducts heat well, and plastic does not. In recent years, an interdisciplinary group of materials scientists, engineers, physicists, and chemists have succeeded in pushing back long-established limits in the thermal conductivity of materials. Carbon nanotubes and graphene are at the high end of the thermal conductivity spectrum due to their high sound velocities and relative lack of processes that scatter phonons. Unfortunately, the superlative thermal properties of carbon nanotubes have not found immediate application in composites or interface materials because of difficulties in making good thermal contact with the nanotubes. At the low end of the thermal conductivity spectrum, solids that combine order and disorder in the random stacking of two-dimensional crystalline sheets, so-called “disordered layered crystals,” show a thermal conductivity that is only a factor of 2 larger than air. The cause of this low thermal conductivity may be explained by the large anisotropy in elastic constants that suppresses the density of phonon modes that propagate along the soft direction. Low-dimensional quantum magnets demonstrate that electrons and phonons are not the only significant carriers of heat. Near room temperature, the spin thermal conductivity of spin-ladders is comparable to the electronic thermal conductivities of metals. Our measurements of nanoscale thermal transport properties employ a variety of ultrafast optical pump-probe metrology tools that we have developed over the past several years. We are currently working to extend these techniques to high pressures (60 GPa), high magnetic fields (5 T), and high temperatures (1000 K).

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Zheng, X., Cahill, D.G., Zhao, J.-C., Adv. Eng. Mater. 7, 622 (2005).CrossRefGoogle Scholar
Keblinski, P., Cahill, D.G., Bodapati, A., Sullivan, C.R., Taton, T.A., J. Appl. Phys. 100, 54305 (2006).CrossRefGoogle Scholar
Costescu, R.M., Wall, M.A., Cahill, D.G., Phys. Rev. B 67, 054302 (2003).CrossRefGoogle Scholar
Lyeo, H.-K., Cahill, D.G., Phys. Rev. B 73, 144301 (2006).CrossRefGoogle Scholar
Balandin, A.A., Nat. Mater. 10, 569 (2011).CrossRefGoogle Scholar
Cola, B.A., Xu, J., Cheng, C., Xu, X., Fisher, T.S., Hu, H., J. Appl. Phys. 101, 054313 (2007).CrossRefGoogle Scholar
Huxtable, S., Cahill, D., Shenogin, S., Xue, L., Ozisik, Rahmi, Barone, P., Usrey, M., Strano, M.S., Siddons, G., Shim, M., Keblinski, P., Nat. Mater. 2, 731 (2003).CrossRefGoogle Scholar
Chiritescu, C., Cahill, D.G., Nguyen, N., Johnson, D., Bodapati, A., Keblinski, P., Zschack, P., Science 315, 351 (2007).Google Scholar
Chen, B., Hsieh, W.-P., Cahill, D.G., Trinkle, D.R., Li, J., Phys. Rev. B 83, 13201 (2011).Google Scholar
Hess, C., Eur. Phys. J. Spec. Top. 151, 73 (2007).CrossRefGoogle Scholar
Goodson, K.E., Science 315, 342 (2007).CrossRefGoogle ScholarPubMed
Olson, J.R., Pohl, R.O., Vandersande, J.W., Zoltan, A., Anthony, T.R., Banholzer, W.F., Phys. Rev. B 47, 14850 (1993).CrossRefGoogle Scholar
Li, D., Wu, Y., Kim, P., Shi, L., Yang, P., Majumdar, A., Appl. Phys. Lett. 83, 2934 (2003).CrossRefGoogle Scholar
Jang, W., Chen, Z., Bao, W., Lau, C.N., Dames, C., Nano Lett. 10, 3909 (2010).CrossRefGoogle Scholar
Fujishiro, H., Ikebe, M., Kashima, T., Yamanaka, A., Jpn. J. Appl. Phys. 36, 5633 (1997).CrossRefGoogle Scholar
Shen, S., Henry, A., Tong, J., Zheng, R.T., Chen, G., Nat. Nanotechnol. 5, 251 (2010).CrossRefGoogle Scholar
Cahill, D.G., Rev. Sci. Instrum. 75, 5119 (2004).Google Scholar
Angstrom, A.J., Ann. Phys. 114, 513 (1861).Google Scholar
Einstein, A., Ann. Phys. 35, 679 (1911).CrossRefGoogle Scholar
Cahill, D.G., Watson, S.K., Pohl, R.O., Phys. Rev. B 46, 6131 (1992).CrossRefGoogle Scholar
Kim, S., Zuo, J., Nguyen, N., Johnson, D.C., Cahill, D.G., J. Mat. Res. 23, 1064 (2008).CrossRefGoogle Scholar
Petrenko, V.F., Whitworth, R.W., The Physics of Ice (Oxford University Press, UK, 1999).Google Scholar
Kumar, G.S., Prasad, G., Pohl, R.O., J. Mater. Sci. 28 (16), 4261 (1993).Google Scholar
Cahill, D.G., Pohl, R.O., Ann. Rev. Phys. Chem. 39, 93 (1988).Google Scholar
Cahill, D.G., Goodson, K.E., Majumdar, A., J. Heat Transfer 124, 223 (2002).CrossRefGoogle Scholar
Noh, M., Thiel, J., Johnson, D.C., Science 270, 1181 (1995).CrossRefGoogle Scholar
Hsieh, W.-P., Chen, B., Li, J., Keblinski, P., Cahill, D.G., Phys. Rev. B 80, 180302 (2009).CrossRefGoogle Scholar
Lobban, C., Finney, J.L., Kuhs, W.F., Nature 391, 268 (1998).CrossRefGoogle Scholar
Slack, G.A., J. Phys. Chem. Solids 34 (2), 321 (1973).CrossRefGoogle Scholar
Koh, Y.K., Cahill, D.G., Phys. Rev. B 76, 75207 (2007).CrossRefGoogle Scholar
Sanders, D.J., Walton, D., Phys. Rev. B 15, 31 (1977).CrossRefGoogle Scholar