Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-24T08:41:51.576Z Has data issue: false hasContentIssue false

Extracellular signal regulation of cell differentiation in biofilms

Published online by Cambridge University Press:  18 May 2011

Liraz Chai
Affiliation:
Harvard Medical School, Boston, MA 02115, USA; [email protected]
Hera Vlamakis
Affiliation:
Harvard Medical School, Boston, MA 02115, USA; [email protected]
Roberto Kolter
Affiliation:
Harvard Medical School, Boston, MA 02115, USA; [email protected]
Get access

Abstract

Bacteria often live in the form of surface-associated communities of cells termed biofilms. Within biofilms, there is a division of labor in which genetically identical cells differentiate to serve distinct functions. This cellular differentiation results from a response to extracellular signals that occur due to changes in the local environment of a cell or in response to signaling molecules that the cells themselves produce. In this review, we discuss differentiation in biofilms, focusing on the molecular mechanisms that regulate differentiation in the bacterium Bacillus subtilis. In this organism, there is a subpopulation of cells within a biofilm that produces a signal, while a different subpopulation of cells responds to it. Studying what signals cells use to communicate with each other within a biofilm will allow for better design of strategies to prevent and disrupt biofilms.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Hall-Stoodley, L., Costerton, J.W., Stoodley, P., Nat. Rev. Microbiol. 2, 95 (2004).CrossRefGoogle Scholar
2.O’Toole, G., Kaplan, H.B., Kolter, R., Annu. Rev. Microbiol. 54, 49 (2000).CrossRefGoogle Scholar
3.Costerton, J.W., Stewart, P.S., Greenberg, E.P., Science 284, 1318 (1999).CrossRefGoogle Scholar
4.Branda, S.S., Vik, S., Friedman, L., Kolter, R., Trends Microbiol. 13, 20 (2005).CrossRefGoogle Scholar
5.Lemon, K.P., Earl, A.M., Vlamakis, H.C., Aguilar, C., Kolter, R., Curr. Top. Microbiol. Immunol. 322, 1 (2008).Google Scholar
6.Davey, M.E., O’Toole, G.A., Microbiol. Mol. Biol. Rev. 64, 847 (2000).CrossRefGoogle Scholar
7.Dunne, W.M. Jr., Clin. Microbiol. Rev. 15, 155 (2002).CrossRefGoogle Scholar
8.Hatt, J.K., Rather, P.N., in Bactarial Biofilms, Romeo, T., Ed. (Springer, Heidelberg, 2008), Vol. 322, pp. 163–92.CrossRefGoogle ScholarPubMed
9.An, D., Parsek, M.R., Curr. Opin. Microbiol. 10, 292 (2007).Google Scholar
10.Lopez, D., Vlamakis, H., Kolter, R., Cold Spring Harbor Perspect. Biol. 2, a000398 (2010).Google Scholar
11.Stewart, P.S., Franklin, M.J., Nat. Rev. Microbiol. 6, 199 (2008).CrossRefGoogle Scholar
12.Jacob, F., Monod, J., J. Mol. Biol. 3, 318 (1961).CrossRefGoogle Scholar
13.Nealson, K.H., Arch. Microbiol. 112, 73 (1977).CrossRefGoogle Scholar
14.Nealson, K.H., Platt, T., Hastings, J.W., J. Bacteriol. 104, 313 (1970).CrossRefGoogle Scholar
15.Visick, K.L., Ruby, E.G., Curr. Opin. Microbiol. 9, 632 (2006).CrossRefGoogle Scholar
16.Eberhard, A., Burlingame, A.L., Eberhard, C., Kenyon, G.L., Nealson, K.H., Oppenheimer, N.J., Biochemistry 20, 2444 (1981).CrossRefGoogle Scholar
17.Ng, W.L., Bassler, B.L., Annu. Rev. Genet. 43, 197 (2009).CrossRefGoogle Scholar
18.Lazazzera, B.A., Peptides 22, 1519 (2001).CrossRefGoogle ScholarPubMed
19.Flardh, K., Buttner, M.J., Nat. Rev. Microbiol. 7, 36 (2009).CrossRefGoogle Scholar
20.Fuqua, W.C., Winans, S.C., Greenberg, E.P., J. Bacteriol. 176, 269 (1994).Google Scholar
21.Di Cagno, R., De Angelis, M., Calasso, M., Gobbetti, M., J. Proteomics. 74, 19 (2010).CrossRefGoogle ScholarPubMed
22.Branda, S.S., Gonzalez-Pastor, J.E., Ben-Yehuda, S., Losick, R., Kolter, R., Proc. Natl. Acad. Sci. U.S.A. 98, 11621 (2001).CrossRefGoogle Scholar
23.Veening, J.W., Kuipers, O.P., Brul, S., Hellingwerf, K.J., Kort, R., J. Bacteriol. 188, 3099 (2006).Google Scholar
24.Smits, W.K., Kuipers, O.P., Veening, J.W., Nat. Rev. Microbiol. 4, 259 (2006).CrossRefGoogle Scholar
25.Dubnau, D., Losick, R., Mol. Microbiol. 61, 564 (2006).CrossRefGoogle Scholar
26.Vlamakis, H., Aguilar, C., Losick, R., Kolter, R., Genes Dev. 22, 945 (2008).CrossRefGoogle Scholar
27.Lopez, D., Fischbach, M.A., Chu, F., Losick, R., Kolter, R., Proc. Natl. Acad. Sci. U.S.A. 106, 280 (2009).CrossRefGoogle Scholar
28.Hahn, J., Dubnau, D., J. Bacteriol. 173, 7275 (1991).CrossRefGoogle Scholar
29.Magnuson, R., Solomon, J., Grossman, A.D., Cell 77, 207 (1994).CrossRefGoogle Scholar
30.Lopez, D., Vlamakis, H., Losick, R., Kolter, R., Genes Dev. 23, 1631 (2009).CrossRefGoogle Scholar