Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-26T12:05:58.878Z Has data issue: false hasContentIssue false

Experimental measurements in single-nanotube fluidic channels

Published online by Cambridge University Press:  12 April 2017

Hyegi Min
Affiliation:
School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology, South Korea; [email protected]
Yun-Tae Kim
Affiliation:
School of Life Sciences, Ulsan National Institute of Science and Technology, South Korea; [email protected]
Chang Young Lee
Affiliation:
School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology, South Korea; [email protected]
Get access

Abstract

Technologies for detecting and analyzing a single molecule help us understand and engineer numerous phenomena observed in nature. Carbon nanotubes (CNTs) are highly efficient molecular conduits due to their atomically smooth surface. Because of their small diameters, comparable to the size of a single molecule, even a single blocking molecule can obstruct CNT fluidic channels. Analyzing these pore-blocking events in CNTs therefore enables single-molecule studies. The high-aspect ratios of CNT channels, which extend the time scale of transport, allow for studying molecular transport that is too fast to record in other systems. Both theoretical studies and ensemble experimental measurements have verified the enhanced flow of various ions and molecular species in CNTs. Experimental measurements of a single-CNT fluidic channel, however, have only recently begun, demonstrating the detection of individual DNA, polymer, and alkali-metal ions. This article reviews recent advances in single-nanotube fluidic channels with a focus on experimental measurements.

Type
Research Article
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Holt, J.K., Adv. Mater. 21, 3542 (2009).Google Scholar
Park, H.G., Jung, Y., Chem. Soc. Rev. 43, 565 (2014).Google Scholar
Noy, A., Park, H.G., Fornasiero, F., Holt, J.K., Grigoropoulos, C.P., Bakajin, O., Nano Today 2, 22 (2007).Google Scholar
Pang, P., He, J., Park, J.H., Krstic, P.S., Lindsay, S., ACS Nano 5, 7277 (2011).Google Scholar
Liu, H.T., He, J., Tang, J.Y., Liu, H., Pang, P., Cao, D., Krstic, P., Joseph, S., Lindsay, S., Nuckolls, C., Science 327, 64 (2010).Google Scholar
Ito, T., Sun, L., Crooks, R.M., Chem. Commun. 13, 1482 (2003).Google Scholar
Sun, L., Crooks, R.M., J. Am. Chem. Soc. 122, 12340 (2000).Google Scholar
Lee, C.Y., Choi, W., Han, J.H., Strano, M.S., Science 329, 1320 (2010).Google Scholar
Choi, W., Ulissi, Z.W., Shimizu, S.F., Bellisario, D.O., Ellison, M.D., Strano, M.S., Nat. Commun. 4, 2397 (2013).CrossRefGoogle Scholar
Schoch, R.B., Han, J.Y., Renaud, P., Rev. Mod. Phys. 80, 839 (2008).Google Scholar
Wu, J., Paudel, K.S., Strasinger, C., Hammell, D., Stinchcomb, A.L., Hinds, B.J., Proc. Natl. Acad. Sci. U.S.A. 107, 11698 (2010).Google Scholar
Pan, X.L., Fan, Z.L., Chen, W., Ding, Y.J., Luo, H.Y., Bao, X.H., Nat. Mater. 6, 507 (2007).Google Scholar
Huang, S.M., Cai, X.Y., Liu, J., J. Am. Chem. Soc. 125, 5636 (2003).CrossRefGoogle Scholar
Jin, Z., Chu, H.B., Wang, J.Y., Hong, J.X., Tan, W.C., Li, Y., Nano Lett. 7, 2073 (2007).Google Scholar
Choi, W., Lee, C.Y., Ham, M.H., Shimizu, S., Strano, M.S., J. Am. Chem. Soc. 133, 203 (2011).Google Scholar
Song, W.S., Pang, P., He, J., Lindsay, S., ACS Nano 7, 689 (2013).Google Scholar
Wu, J., Gerstandt, K., Majumder, M., Zhan, X., Hinds, B.J., Nanoscale 3, 3321 (2011).Google Scholar
Wu, J., Gerstandt, K., Zhang, H.B., Liu, J., Hinds, B.J., Nat. Nanotechnol. 7, 133 (2012).Google Scholar
Lee, B., Baek, Y., Lee, M., Jeong, D.H., Lee, H.H., Yoon, J., Kim, Y.H., Nat. Commun. 6, 7109 (2015).Google Scholar
Ito, T., Sun, L., Crooks, R.M., Anal. Chem. 75, 2399 (2003).Google Scholar
Ito, T., Sun, L., Henriquez, R.R., Crooks, R.M., Acc. Chem. Res. 37, 937 (2004).Google Scholar
Liu, L., Xie, J.I., Li, T., Wu, H.C., Nat. Protoc. 10, 1670 (2015).CrossRefGoogle Scholar
Liu, L., Yang, C., Zhao, K., Li, J.Y., Wu, H.C., Nat. Commun. 4, 2989 (2013).CrossRefGoogle Scholar
Secchi, E., Nigues, A., Jubin, L., Siria, A., Bocquet, L., Phys. Rev. Lett. 116, 154501 (2016).Google Scholar
Geng, J., Kim, K., Zhang, J.F., Escalada, A., Tunuguntla, R., Comolli, L.R., Allen, F.I., Shnyrova, A.V., Cho, K.R., Munoz, D., Wang, Y.M., Grigoropoulos, C.P., Ajo-Franklin, C.M., Frolov, V.A., Noy, A., Nature 514, 612 (2014).Google Scholar
Tunuguntla, R.H., Allen, F.I., Kim, K., Belliveau, A., Noy, A., Nat. Nanotechnol. 11, 639 (2016).Google Scholar
He, J., Liu, H., Pang, P., Cao, D., Lindsay, S., J. Phys. Condens. Matter 22, 454112 (2010).Google Scholar
Park, J.H., He, J., Gyarfas, B., Lindsay, S., Krstic, P.S., Nanotechnology 23, 455107 (2012).Google Scholar
Pikovsky, A.S., Kurths, J., Phys. Rev. Lett. 78, 775 (1997).Google Scholar
Guo, S.R., Meshot, E.R., Kuykendall, T., Cabrini, S., Fornasiero, F., Adv. Mater. 27, 5726 (2015).Google Scholar
Huang, S., Romero-Ruiz, M., Castell, O.K., Bayley, H., Wallace, M.I., Nat. Nanotechnol. 10, 986 (2015).Google Scholar
Wang, C., Bruce, R.L., Duch, E.A., Patel, J.V., Smith, J.T., Astier, Y., Wunsch, B.H., Meshram, S., Galan, A., Scerbo, C., Pereira, M.A., Wang, D.Q., Colgan, E.G., Lin, Q.H., Stolovitzky, G., ACS Nano 9, 1206 (2015).Google Scholar
Robertson, J.W.F., Rodrigues, C.G., Stanford, V.M., Rubinson, K.A., Krasilnikov, O.V., Kasianowicz, J.J., Proc. Natl. Acad. Sci. U.S.A. 104, 8207 (2007).CrossRefGoogle Scholar
Bonardi, F., Nouwen, N., Feringa, B.L., Driessen, A.J.M., Mol. Biosyst. 8, 709 (2012).Google Scholar
Fyta, M., J. Phys. Condens. Matter 27, 273101 (2015).Google Scholar
Derrington, I.M., Butler, T.Z., Collins, M.D., Manrao, E., Pavlenok, M., Niederweis, M., Gundlach, J.H., Proc. Natl. Acad. Sci. U.S.A. 107, 16060 (2010).Google Scholar