Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-14T04:52:17.726Z Has data issue: false hasContentIssue false

Expanding Frontiers in Biomaterials

Published online by Cambridge University Press:  31 March 2011

Get access

Abstract

This article celebrating Arthur von Hippel's career considers the expanding frontiers in the field of biomaterials, a subject that intrigued him given his interests in the molecular engineering of materials. The interface of materials science and biology started to develop decades ago when synthetic materials were first used to repair parts of the human body. An exciting transformation is now occurring in the field, as advances in biology are used to engineer bioactive materials at the molecular level. The transformation is going further to other frontiers that include the use of sophisticated materials to obtain biological information and learn biology, the creation of materials that imitate biological microstructures and functions, and the manipulation of organisms to create artificial materials.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Hippel, A. von, Mater. Res. Bull. 14 (1979) p. 273.CrossRefGoogle Scholar
2.Ratner, B.D., Biomaterials Science: An Introduction to Materials in Medicine (Elsevier Academic Press, San Diego, 2004).Google Scholar
3.Anderson, D.G., Burdick, J.A., and Langer, R., Science 305 (2004) p. 1923.CrossRefGoogle ScholarPubMed
4.Hench, L.L. and Ethridge, E.C., Biomaterials: An Interfacial Approach (Academic Press, San Diego, 1982).Google Scholar
5.Dumitriu, S., ed., Polymeric Biomaterials, 2nd ed. (Marcel Dekker, New York, 2002).Google Scholar
6.Bronzio, J.D., The Biomedical Engineering Handbook (CRC Press, Boca Raton, Fla., 1995).Google Scholar
7.Williams, H.P., Br. J. Ophthalmol. 85 (9) (2001) p. 1022.CrossRefGoogle Scholar
8.DeWall, R.A., Qasim, N., and Carr, L., Ann. Thorac. Surg. 69 (2000) p. 1612.CrossRefGoogle Scholar
9.Stupp, S.I., MRS Bull. 30 (7) (2005) p. 546.CrossRefGoogle Scholar
10.Beniash, E., Hartgerink, J.D., Storrie, H., Stendahl, J.C., and Stupp, S.I., Acta Biomater. 1 (2005) p. 385.CrossRefGoogle Scholar
11.Sarkar, S., Dadhania, M., Rourke, P., Desai, T.A., and Wong, J.Y., Acta Biomater. 1 (2005) p. 93.CrossRefGoogle Scholar
12.Shin, M., Matsuda, K., Ishii, O., Terai, H., Kaazempur-Mofrad, M., Borenstein, J., Detmar, M., and Vacanti, J.P., Biomed. Microdevices 6 (4) (2004) p. 269.CrossRefGoogle Scholar
13.Storrie, H. and Stupp, S.I., Biomaterials 26 (2005) p. 5492.CrossRefGoogle Scholar
14.Furstner, R., Barthlott, W., and Walzel, P., Langmuir 21 (2005) p. 956.CrossRefGoogle Scholar
15.Lai, S.C.S, “Mimicking Nature: Physical Basis and Artificial Synthesis of the Lotus-Effect,” Universiteit Leiden (August 2003), home.wanadoo.nl/scslai/lotus.pdf (accessed September 2005.)Google Scholar
16. Photograph of a water lily, www.chiba-u.ac.jp/JP/gakuseibu/kyoumuka/original/lot us-2.jpg (accessed September 2005).Google Scholar
17.Geim, A.K., Dubonos, S.V., Grigorieva, I.V., Novoselov, K.S., Zhukov, A.A., and Shapo-val, S.Y., Nature Mater. Lett. (2003) p. 461.Google Scholar
18. “How Geckos Stick to Walls,” www. lclark.edu/,autumn/private/u38j47a0t/ (accessed September 2005).Google Scholar
19.Aizenberg, J., Adv. Mater. 16 (2004) p. 1295.CrossRefGoogle Scholar
20. The Whitaker Foundation, “Imaging Prostate Cancer with Quantum Dots,” www. whitaker.org/news/nie2.html (accessed September 2005).Google Scholar
21. Office of Naval Research, “Image Gallery: General Science and Technology,” www.onr.navy.mil/media/gallery_category.asp?Cat general (accessed September 2005).Google Scholar
22.Wu, X., Liu, H., Liu, J., Haley, K.N., Treadway, J.A., Larson, J.P., Ge, N., Peale, F., and Bruchez, M.P., Nature Biotech. 21 (2003) p. 41.CrossRefGoogle Scholar
23.Rosi, N.L. and Mirkin, C.A., Chem. Rev. 105 (2005) p. 1547.CrossRefGoogle Scholar
24.Groves, J.T., Angew. Chem. Int. Ed. 44 (2005) p. 3524.CrossRefGoogle Scholar
25.Brock, A., Chang, E., Ho, C.C., LeDuc, P., Jiang, X., Whitesides, G.M., Ingber, D.E., Langmuir 19 (2003) p. 1611.CrossRefGoogle Scholar
26.Tan, J.L., Tien, J., Pirone, D., Gray, D.S., and Chen, C.S., Proc. Natl. Acad. Sci. USA 100 (2003) p. 1484.CrossRefGoogle Scholar
27.Mao, C., Solis, D.J., Reiss, B.D., Kottmann, S.T., Sweeney, R.Y., Hayhurst, A., Georgiou, G., Iverson, B., and Belcher, A.M., Science 303 (2004) p. 213.CrossRefGoogle Scholar
28.Whaley, S.R., English, D.S., Hu, E.L., Barbara, P.F., and Belcher, A.M., Nature 405 (2000) p. 665.CrossRefGoogle Scholar
29.Cappello, J., Crissman, J., Dorman, M., Mikolajczak, M., Textor, G., Marquet, M., and Ferrari, F., Biotechnol. Progr. 6 (1990) p. 198.CrossRefGoogle Scholar
30.Spoerke, E.D. and Stupp, S.I., Biomaterials 26 (2005) p. 5120.CrossRefGoogle Scholar
31.Spoerke, E.D. and Stupp, S.I., J. Biomed. Mater. Res. 67A (2003) p. 960.CrossRefGoogle Scholar
32.Lanza, R.P., Langer, R., and Vacanti, J., Principles of Tissue Engineering (Academic Press, San Diego, 2000).Google Scholar
33.Richardson, T.P., Peters, M.C., Ennett, A.B., and Mooney, D.J., Nature Biotech. 19 (2001) p. 1029.CrossRefGoogle Scholar
34.Mata, A., doctoral dissertation, Cleveland State University (2005).Google Scholar
35.Mata, A., Fleischman, A.J., and Roy, S., “Microfabricated 3D Scaffolds for Tissue Engineering Applications,” in Nanoscale Materials Science in Biology and Medicine, edited by Laurencin, C.T. and Botchwey, E.A. (Mater Res. Soc. Symp. Proc. 845, Warrendale, PA, 2005) p. AA4.3.1.Google Scholar
36.Tan, W. and Desai, T.A., Biomaterials 25 (2004) p. 1355.CrossRefGoogle ScholarPubMed
37.Folch, A., Mezzour, S., During, M., Hurtado, O., Toner, M., and Muller, R., Biomed. Microdevices 2 (3) (2000) p. 207.CrossRefGoogle Scholar
38.Mata, A., Fleischman, A.J., and Roy, S., Proc. Am. Soc. Precision Eng. Spring Topical Meeting on Precision Micro/Nano-Scale Polymer-Based Component and Device Fabrication, Vol. 35 (2005) p. 15.Google Scholar
39.Lendlein, A. and Langer, R., Science 296 (2002) p. 1673.CrossRefGoogle Scholar
40.Yang, J., Yamato, M., and Okano, T., MRS Bull. 30 (3) (2005) p. 189.CrossRefGoogle Scholar
41.Nishida, K., Yamato, M., Hayashida, Y., Watanabe, K., Maeda, N., Watanabe, H., Yamamoto, K., Nagai, S., Kikuchi, A., Tano, Y., and Okano, T., Transplantation 77 (2004) p. 379.CrossRefGoogle Scholar
42.Shimizu, T., Yamato, M., Isoi, Y., Akutsu, T., Setomaru, T., Abe, K., Kikuchi, A., Umezu, M., and Okano, T., Circ. Res. 90 (2002) p. e40.CrossRefGoogle Scholar
43.Lahann, J. and Langer, R., MRS Bull. 30 (3) (2005) p. 185.CrossRefGoogle Scholar
44.Hartgerink, J.D., Beniash, E., and Stupp, S.I., Science 294 (2001) p. 1684.CrossRefGoogle Scholar
45.Silva, G.A., Czeisler, C., Niece, K.L., Beniash, E., Harrington, D., Kessler, J.A., and Stupp, S.I., Science 303 (2004) p. 1352.CrossRefGoogle Scholar
46.Hartgerink, J.D., Beniash, E., and Stupp, S.I., Proc. Natl. Acad. Sci. USA 99 (2002) p. 5133.CrossRefGoogle Scholar
47.Niece, K.L., Hartgerink, J.D., Donners, J., and Stupp, S.I., J. Am. Chem. Soc. 125 (2003) p. 7146.CrossRefGoogle Scholar
48.Service, R.F., Science 308 (2005) p. 44.Google Scholar
49.Lehn, J.-M., Les Prix Nobel (1988) p. 129.Google Scholar
50.Behanna, H.A., Donners, J., Gordon, A.C., and Stupp, S.I., J. Am. Chem. Soc. 127 (2005) p. 1193.CrossRefGoogle Scholar
51.Bull, S.R., Guler, M.O., Bras, R.E., Meade, T.J., and Stupp, S.I., Nano Lett. 5 (2005) p. 1.CrossRefGoogle Scholar
52.Guler, M.O., Pokorski, J.K., Appella, D.H., and Stupp, S.I., Bioconjug. Chem., 16 (2005) p. 501.CrossRefGoogle Scholar
53.Spolenak, R., Stanislav, G., and Arzt, E., Acta Biomater. 1 (2005) p. 5.CrossRefGoogle Scholar
54.Autumn, K. and Peattie, A.M., Integr. Comp. Biol. 42 (2002) p. 1081.CrossRefGoogle Scholar
55.Breslow, R., Chem. Rec. (2000) p. 3.Google Scholar
56.Kisailus, D., Najarian, M., Weaver, J.C., and Morse, D.E., Adv. Mater. 17 (2005) p. 1234.CrossRefGoogle Scholar
57.Du, C., Falini, G., Fermani, S., Abbott, C., and Moradian-Oldak, J., Science 307 (2005) p. 1450.CrossRefGoogle Scholar
58.Seeman, N.C., Trends Biochem. Sci. 30 (2005) p. 119.CrossRefGoogle Scholar
59.Niemeyer, C.M., Curr. Opin. Chem. Biol. 4 (2000) p. 609.CrossRefGoogle Scholar
60.Winfree, E., Liu, F., Wenzler, L.A., and Seeman, N.C., Nature 394 (1998) p. 539.CrossRefGoogle Scholar
61.Mao, C., Sun, W., and Seeman, N.C., Nature 386 (1997) p. 137.CrossRefGoogle Scholar
62.Chen, J. and Seeman, N.C., Nature 350 (1991) p. 631.CrossRefGoogle Scholar
63.Mao, C., Sun, W., Shen, Z., and Seeman, N.C., Nature 397 (1999) p. 144.CrossRefGoogle Scholar
64.Yan, H., Zhang, X., Shen, Z., and Seeman, N.C., Nature 415 (2002) p. 62.CrossRefGoogle Scholar
65.Warner, M.G. and Hutchison, J.E., Nature Mater. 2 (2003) p. 272.CrossRefGoogle Scholar
66.Nakao, H., Shiigi, H., Yamamoto, Y., Tokonami, S., Nagaoka, T., Sugiyama, S., and Ohtani, T., Nano Lett. 3 (2003) p. 1391.CrossRefGoogle Scholar
67.Li, L.-S. and Stupp, S.I., Angew. Chem. Int. Ed. 44 (2005) p. 1833.CrossRefGoogle Scholar
68.Yang, S., Chen, G., Megens, M., Ullal, C.K., Han, Y.J., Rapaport, R., Thomas, E.L, and Aizenberg, J., Adv. Mater., 17 (4) (2005) p. 435.Google Scholar
69.Alivisatos, P., Nature Biotechnol. 22 (2004) p. 47.CrossRefGoogle Scholar
70.Bruchez, M. Jr. , Moronne, M., Gin, P., Weiss, S., and Alivisatos, A.P., Science 281 (1998) p. 2013.CrossRefGoogle Scholar
71.Chan, W.C.W. and Nie, S., Science 281 (1998) p. 2016.CrossRefGoogle Scholar
72.Michalet, X., Pinaud, F.F., Bentolila, L.A., Tsay, J.M., Doose, S., Li, J.J., Sundaresan, G., Wu, A.M., Gambhir, S.S., and Weiss, S., Science 307 (2005) p. 538.CrossRefGoogle Scholar
73.Medintz, I.L., Uyeda, H.T., Goldman, E.R., and Mattoussi, H., Nature Mater. 4 (2005) p. 435.CrossRefGoogle Scholar
74.Kim, S., Lim, Y.T., Soltesz, E.G., Grand, A.M. De, Lee, J., Nakayama, A., Parker, J.A., Mihaljevic, T., Laurence, R.G., Dor, D.M., Cohn, L.H., Bawendi, M.G., and Frangioni, J.V., Nature Biotechnol. 22 (2004) p. 93.CrossRefGoogle Scholar
75.Taton, T.A., Mirkin, C.A., and Letsinger, R.L., Science 289 (2000) p. 1757.CrossRefGoogle Scholar
76.Thaxton, C.S., Rosi, N.L., and Mirkin, C.A., MRS Bull. 30 (5) (2005) p. 376.CrossRefGoogle Scholar
77.Elghanian, R., Storhoff, J.J., Mucic, R.C., Letsinger, R.L., and Mirkin, C.A., Science 277 (1997) p. 1078.CrossRefGoogle Scholar
78.Cao, Y.W.C., Jin, R.C., and Mirkin, C.A., Science 297 (2002) p. 1536.CrossRefGoogle Scholar
79.Jackson, J.B., Westcott, S.L., Hirsch, L.R., West, J.L., and Halas, N.J., Appl. Phys. Lett. 82 (2003) p. 257.CrossRefGoogle Scholar
80.Hirsch, L.R., Jackson, J.B., Lee, A., Halas, N.J., and West, J., Anal. Chem. 75 (2003) p. 2377.CrossRefGoogle Scholar
81.Nam, J.-M., Stoeva, S., and Mirkin, C.A., J. Am. Chem. Soc. 126 (2004) p. 5932.CrossRefGoogle Scholar
82.Yang, P.D., MRS Bull. 30 (2) (2005) p. 85.CrossRefGoogle Scholar
83.Sirbuly, D.J., Law, M., Pauzauskie, P., Yan, H., Maslov, A.V., Knutsen, K., Ning, C.-Z., Saykally, R.J., and Yang, P., Proc. Natl. Acad. Sci. USA 102 (2005) p. 7800.CrossRefGoogle Scholar
84.Kong, J., Franklin, N., Zhou, C., Peng, S., Cho, J.J., and Dai, H., Science 287 (2000) p. 622.CrossRefGoogle Scholar
85.Collins, P.G., Bradley, K., Ishigami, M., and Zettl, A., Science 287 (2000) p. 1801.CrossRefGoogle Scholar
86.Chen, R.J., Bangsaruntip, S., Drouvalakis, K.A., Kam, N. Wong Shi, Shim, M., Li, Y., Kim, W., Utz, P.J., and Dai, H., Proc. Natl. Acad. Sci. USA 100 (2003) p. 4984.CrossRefGoogle Scholar
87.Cui, Y., Wei, Q.Q., Park, H.K., and Lieber, C.M., Science 293 (2001) p. 1289.CrossRefGoogle Scholar
88.Clément, O., Siauve, N., Cuénod, C-A., and Frija, G., Top. Magn. Reson. Imaging 9 (1998) p. 167.CrossRefGoogle Scholar
89.Wang, Y.-X., Hussain, S.M., and Krestin, G.P., Eur. Radiol. 11 (2001) p. 2319.CrossRefGoogle Scholar
90.Lawaczeck, R., Menzel, M., and Pietsch, H., Appl. Organomet. Chem. 18 (2004) p. 506.CrossRefGoogle Scholar
91.Chilkoti, A. and Hubbell, J.A., MRS Bull. 30 (3) (2005) p. 175.CrossRefGoogle Scholar
92.Xia, Y. and Whitesides, G.M., Angew. Chem. Int. Ed. 37 (1998) p. 550.3.0.CO;2-G>CrossRefGoogle Scholar
93.Nelson, C.M. and Chen, C.S., FEBS Lett. 514 (2002) p. 238.CrossRefGoogle Scholar
94.Chen, C.S., Alonso, J.L., Ostuni, E., Whitesides, G.M., and Ingber, D.E., Biochem. Biophys. Res. Commun. 307 (2003) p. 355.CrossRefGoogle Scholar
95.Bhatia, S.N., Balis, U.J., Yarmush, M.L., and Toner, M., FASEB J. 13 (1999) p. 1883.CrossRefGoogle Scholar
96.Mrksich, M., MRS Bull. 30 (3) (2005) p. 180.CrossRefGoogle Scholar
97.Raghavan, S. and Chen, C.S., Adv. Mater. 16 (15) (2004) p. 1303.CrossRefGoogle Scholar
98.Chen, C.S., Jiang, X., and Whitesides, G.M., MRS Bull. 30 (3) (2005) p. 194.CrossRefGoogle Scholar
99.Jiang, X. and Whitesides, G.M., Eng. Life Sci. 3 (12) (2003) p. 475.CrossRefGoogle Scholar
100.Walker, G.M., Sai, J., Richmond, A., Stremler, M., Chung, C.Y., and Wikswo, J.P., Lab Chip 5 (2005) p. 611.CrossRefGoogle Scholar
101.Takayama, S., Ostuni, E., LeDuc, , Naruse, K., Ingber, D.E., and Whitesides, G.M., Nature 411 (2001) p. 1016.CrossRefGoogle Scholar
102.Groves, J.T., Ulman, N., and Boxer, S.G., Science 275 (1997) p. 651.CrossRefGoogle Scholar
103.Yoshina-Ishii, C., Miller, G.P., Kraft, M.L., Kool, E.T., and Boxer, S.G., J. Am. Chem. Soc. 127 (2005) p. 1356.CrossRefGoogle Scholar
104.Schonherr, H., Johnson, J.M., Lenz, P., Frank, C.W., and Boxer, S.G., Langmuir 20 (2004) p. 11600.CrossRefGoogle Scholar
105.Baksh, M.M., Jaros, M., and Groves, J.T., Nature 427 (2004) p. 139.CrossRefGoogle Scholar
106.Kam, L. and Boxer, S.G., Langmuir 19 (2003) p. 1624.CrossRefGoogle Scholar
107.Grakoui, A., Bromley, S.K., Sumen, C., Davis, M.M., Shaw, A.S., Allen, P.M., and Dustin, M.L., Science 285 (1999) p. 221.CrossRefGoogle Scholar
108.Curtis, A. and Wilkinson, C., Biomaterials 18 (1998) p. 1573.CrossRefGoogle Scholar
109.Harrison, R.G., J. Exp. Zool. 17 (4) (1912) p. 521.CrossRefGoogle Scholar
110.Brunette, D.M., Exp. Cell Res. 164 (1) (1986) p. 11.CrossRefGoogle Scholar
111.Mata, A., Boehm, C., Fleischman, A.J., Muschler, G.M., and Roy, S., Biomed. Microdevices 4 (4) (2002) p. 267.CrossRefGoogle Scholar
112.Mata, A., Boehm, C., Fleischman, A.J., Muschler, G.M., and Roy, S., J. Biomed. Mater. Res. 62 (2002) p. 499.CrossRefGoogle Scholar
113.Braber, E.T. den, Jansen, H.V., Boer, M.J. de, Croes, H.J.E., Elwenspoek, M., Ginsel, L.A., and Jansen, J.A., J. Biomed. Mater. Res. 40 (1998) p. 425.3.0.CO;2-I>CrossRefGoogle Scholar
114.Craighead, H.G., Turner, S.W., Davis, R.C., James, C., Perez, A.M., John, P.M. St., Isaacson, M.S., Kam, L., Shain, W., Turner, J.N., and Banker, G., Biomed. Microdevices 1 (1998) p. 49.CrossRefGoogle Scholar
115.Wilkinson, C.D.W., Riehle, M., Wood, M., Gallagher, J., and Curtis, A.S.G., Mater. Sci. Eng. C19 (2002) p. 263.CrossRefGoogle Scholar
116.Deutsch, D., Motlagh, B., Russell, B., and Desai, T.A., J. Biomed. Mater. Res. 53 (2000) p. 267.3.0.CO;2-J>CrossRefGoogle Scholar
117.Sambrook, J., Fritsch, E.F., and Maniatis, T., Molecular Cloning (Cold Spring Harbor Laboratory Press, New York, 1986).Google Scholar
118Hest, J.C.M. van and Tirrell, D.A., Chem. Commun. (2001) p. 1897.CrossRefGoogle Scholar
119.Pelka, W.A., Harden, J.L., McGrath, K.P., Wirtz, D., and Tirrell, D.A., Science 281 (1998) p. 389.Google Scholar
120.Yu, S.J.M., Conticello, V.P., Zhang, G.H., Kayser, C., Fournier, M.J., Mason, T.L., and Tirrell, D.A., Nature 389 (1997) p. 167.CrossRefGoogle Scholar
121.Link, A.J., Mock, M.L., and Tirrell, D.A., Curr. Opin. Biotechnol. 14 (2003) p. 603.CrossRefGoogle Scholar
122.Hohsaka, T. and Sisido, M., Curr. Opin. Chem. Biol. 6 (2002) p. 809.CrossRefGoogle Scholar
123.Dougherty, D.A., Curr. Opin. Chem. Biol. 4 (2000) p. 645.CrossRefGoogle Scholar
124.Wang, L., Brock, A., Herberich, B., and Schultz, P.G., Science 292 (2001) p.498.CrossRefGoogle Scholar
125.Wang, L. and Schultz, P.G., Angew. Chem. Int. Ed. 44 (2005) p.34.CrossRefGoogle Scholar
126.Silver, S., Gene 179 (1996) p. 9.CrossRefGoogle Scholar
127.Gardea-Torresdey, J.L., Parsons, J.G., Gomez, E., Peralta-Videa, J., Troiani, H.E., Santiago, P., and Yacaman, M.J., Nano Lett. 2 (2002) p. 397.CrossRefGoogle Scholar
128.Mukherjee, P., Ahmad, A., Mandal, D., Senapati, S., Sainkar, S.R., Khan, M.I., Ramani, R., Parischa, R., Ajayakumar, P.V., Alam, M., Sastry, M., and Kumar, R., Angew. Chem. Intl. Ed. 40 (2001) p. 3585.3.0.CO;2-K>CrossRefGoogle Scholar
129.Mukherjee, P., Ahmad, A., Mandal, D., Senapati, S., Sainkar, S.R., Khan, M.I., Parischa, R., Ajayakumar, P.V., Alam, M., Kumar, R., and Sastry, M., Nano Lett. 1 (2001) p. 515.CrossRefGoogle Scholar
130.Dameron, C.T., Reese, R.N., Mehra, R.K., Kortan, A.R., Carroll, P.J., Steigerwald, M.L., Brus, L.E., and Winge, D.R., Nature 338 (1989) p. 596.CrossRefGoogle Scholar
131.Ahmad, A., Mukherjee, P., Mandal, D., Senapati, S., Khan, M.I., Kumar, R., and Sastry, M., J. Am. Chem. Soc. 124 (2002) p.12108.CrossRefGoogle Scholar
132.Douglas, T., Dickson, D.P.E., Betteridge, S., Charnock, J., Garner, C.D., and Mann, S., Science 269 (1995) p. 54.CrossRefGoogle Scholar
133.Hoess, R.H., Chem. Rev 101 (2001) p. 3205.CrossRefGoogle Scholar
134.Spoerke, E.D., Murray, N.D., Li, H., Brinson, L.C., Dunand, D.C., and Stupp, S.I., Acta Biomater. 1 (2005) p. 523.CrossRefGoogle Scholar
135. Atomic force microscope and scanning electron microscope images provided by Jiang, Hongzhou and Harrington, Dr. Daniel A., respectively.Google Scholar