Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-24T07:37:28.844Z Has data issue: false hasContentIssue false

Evaporation-Induced Self-Assembly: Functional Nanostructures Made Easy

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

The following article is an edited transcript based on the MRS Medalist presentation given by C. Jeffrey Brinker (Sandia National Laboratories and the University of New Mexico) on December 3, 2003, at the Materials Research Society Fall Meeting in Boston. Brinker received the Medal for “his pioneering application of principles of sol-gel chemistry to the self-assembly of functional nanoscale materials.” Nature combines hard and soft materials, often in hierarchical architectures, to obtain synergistic, optimized properties with proven, complex functionalities. Emulating natural designs in robust engineering materials using efficient processing approaches represents a fundamental challenge to materials chemists. This presentation reviews progress on understanding so-called evaporation-induced silica/surfactant self-assembly (EISA) as a simple, general means of preparing porous thin-film nanostructures. Such porous materials are of interest for membranes, low-dielectric-constant (low-k) insulators, and even ‘“nano-valves” that open and close in response to an external stimulus. EISA can also be used to simultaneously organize hydrophilic and hydrophobic precursors into hybrid nanocomposites that are optically or chemically polymerizable, patternable, or adjustable.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Whitesides, G.M. and Grzybowski, B.Science 295 (2002) p.2418.CrossRefGoogle Scholar
2Kresge, C.Leonowicz, M.Roth, W.Vartuli, C. and Beck, J., Nature 359 (1992) p.710.CrossRefGoogle Scholar
3Brinker, C.J. and Scherer, G.W.Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing (Academic Press, San Diego, 1990).Google Scholar
4Lu, Y.Ganguli, R.Drewien, C.Anderson, M.Brinker, C.Gong, W.Guo, Y.Soyez, H.Dunn, B.Huang, M. and Zink, J., Nature 389 (1997) p.364.CrossRefGoogle Scholar
5Fan, H.Lu, Y.Stump, A.Reed, S.Baer, T.Schunk, R.PerezLuna, V., Lopez, G. and Brinker, C.Nature 405 (2000) p.56.CrossRefGoogle Scholar
6Doshi, D.Huesing, N.Lu, M.Fan, H.Lu, Y. K. Simmons-Potter, Potter, B.Hurd, A. and Brinker, C.Science 290 (2000) p.107.CrossRefGoogle Scholar
7Lu, Y.Fan, H.Stump, A.Ward, T.Rieker, T. and Brinker, C.Nature 398 (1999) p.223.CrossRefGoogle Scholar
8Brinker, C.Lu, Y.Sellinger, A. and Fan, H.Adv. Mater. 11 (1999) p.579.3.0.CO;2-R>CrossRefGoogle Scholar
9Doshi, D.Gibaud, A.Goletto, V.Lu, M.Gerung, H.Ocko, B.Han, S.Brinker, C.J. Am. Chem. Soc. 125 (2003) p.11646.CrossRefGoogle Scholar
10Doshi, D.Gibaud, A.Liu, N.Sturmayr, D.Malanoski, A.Dunphy, D.Chen, H.Narayanan, S.MacPhee, A.Wang, J.Reed, S.Hurd, A.Swol, F. van, and Brinker, C.J.Phys. Chem. B 107 (2003) p.7683.CrossRefGoogle Scholar
11Gibaud, A.Grosso, D.Smarsly, B.Baptiste, A.Bardeau, J.Babonneau, F.Doshi, D.Chen, Z.Brinker, C. and Sanchez, C.J. Phys. Chem. B 107 (2003) p.6114.CrossRefGoogle Scholar
12Sellinger, A.Weiss, P.Nguyen, A.Lu, Y.Assink, R.Gong, W. and Brinker, C.Nature 394 (1998) p.256.CrossRefGoogle Scholar
13Lu, Y.Yang, Y.Sellinger, A.Lu, M.Huang, J., Fan, H.Haddad, R.Lopez, G.Burns, A.Sasaki, D.Shelnutt, J. and Brinker, C.Nature 410 (2001) p.913.CrossRefGoogle Scholar
14Yang, Y.Lu, Y.Lu, M. J.Huang, Haddad, R.Xomeritakis, G.Liu, N.Malanoski, A.Sturmayr, D.Fan, H.Sasaki, D.Assink, R.Shelnutt, J.Swol, F. van, Lopez, G.Burns, A. and Brinker, C.J. Am. Chem. Soc. 125 (2003) p. 1269.CrossRefGoogle Scholar
15Israelachvili, J.N.Intermolecular and Surface Forces (Academic Press, San Diego, 1992).Google Scholar
16Israelachvili, J.N.Mitchell, D.J. and Ninham, B.W.J.Chem. Soc. 2 (1976) p.1525.Google Scholar
17Fan, H.Yang, K.Boye, D.M.Sigmon, T.Malloy, K.J.Lopez, G.P.Brinker, C.J. and Xu, H.Science 304 (2004) p.567.CrossRefGoogle Scholar
18Beck, J.S.Vartuli, J.C.Roth, W.J.Leonowicz, M.E.Kresge, C.T.Schmitt, K.D.Chu, C.T.-W.Olson, D.H.Sheppard, E.W.McCullen, S.B.Higgins, J.B. and Schlenker, J.L.J.Am. Chem. Soc. 114 (1992) p.10834.CrossRefGoogle Scholar
19Murray, C.B.Kagan, C.R. and Bawendi, M.G.Science 270 (1995) p.1335.CrossRefGoogle Scholar
20Sun, S.H.Murray, C.B.Weller, D.Folks, L. and Moser, A.Science 287 (2000) p.1989.CrossRefGoogle Scholar
21Murray, C.B.Kagan, C.R. and Bawendi, M.G.Science 270 (1995) p.1335.CrossRefGoogle Scholar
22Alivisatos, A.P.Johnsson, K.P.Peng, X.G.Wilson, T.E.Loweth, C.J.Bruchez, M.P. and Schultz, P.G.Nature 382 (1996) p.609.CrossRefGoogle Scholar
23Mirkin, C.A.Letsinger, R.L.Mucic, R.C. and Storhoff, J.J.Nature 382 (1996) p.607.CrossRefGoogle Scholar
24Grabert, H. and Devoret, M.H.Single Charge Tunneling (Plenum Publishers, New York, 1992).CrossRefGoogle Scholar
25Middleton, A.A. and Winggreen, N.S.Phys. Rev. Lett. 71 (1993) p.3198.CrossRefGoogle Scholar
26Rimberg, A.J.Ho, T.R. and Clarke, J.Phys. Rev. Lett. 74 (1995) p.4714.CrossRefGoogle Scholar
27Black, C.T.Murray, C.B.Sandstrom, R.L. and Sun, S.H.Science 290 (2000) p.1131.CrossRefGoogle Scholar
28Beebe, D.J.Moore, J.S.Bauer, J.M.Yu, Q.Liu, R.H.Devadoss, C. and Jo, B.-H.Nature 404 (2000) p.588.CrossRefGoogle Scholar
29Yu, Q.Bauer, J.M.Moore, J.S. and Beebe, D.J.Appl. Phys. Lett. 78 (2001) p.2589.CrossRefGoogle Scholar
30Liu, R.H.Yu, Q. and Beebe, D.J.J., Micro-electromech. Syst. 11 (2002) p.45.CrossRefGoogle Scholar
31Garnweitner, G.Smarsly, B.Assink, R.Ruland, W.Bond, E. and Brinker, C.J.J. Am. Chem. Soc. 125 (2003) p.5626.CrossRefGoogle Scholar
32Yoshida, R.Uchida, K.Kaneko, Y.Sakai, K.Kikuchi, A.Sakurai, Y. and Okano, T.Nature 374 (1995) p.240.CrossRefGoogle Scholar
33Liu, N.Chen, Z.Dunphy, D.Jiang, Y.Assink, R. and Brinker, C.Angew. Chem., Int. Ed. Engl. 42 (2003) p.1731.CrossRefGoogle Scholar
34Liu, N.Dunphy, D.R.Atanassov, P.Bunge, S.D.Chen, Z.Lopez, G.P.Boyle, T.J.Brinker, C.J., Nanolett. 4 (2004) p. 551.CrossRefGoogle Scholar
35Liu, N.Dunphy, D.R.Rodriguez, M.A.Singer, S.Brinker, C. J., Chem. Commun., (2003) p.1144.Google Scholar
36Mal, N.K.Fujiwara, M. and Tanaka, Y.Nature 421 (2003) p.350.CrossRefGoogle Scholar
37Rau, H. in Photochemistry and Photophysics, Vol. II edited by Rabek, J. (CRC Press, Boca Raton, FL, 1990).Google Scholar
38Natansohn, A. in Macromolecular Symposia, edited by Höcker, H., Guth, W.Jung, B.Meisel, I. and Spiegel, S. (WILEY-VCH, Weinheim, Germany, 1999) p.1.Google Scholar
39Kataoka, K.Miyazaki, H.Bunya, M.Okano, T. and Sakurai, Y.J. Am. Chem. Soc. 120 (1998) p.12694.CrossRefGoogle Scholar
40Kokufuta, E.Zhang, Y.Q. and Tanaka, T.Nature 351 (1991) p.302.CrossRefGoogle Scholar
41Miyata, T.Asami, N. and Uragami, T.Nature 399 (1999) p.766.CrossRefGoogle Scholar
42Tanaka, T.Nishio, I.Sun, S.T. and Uenonishio, S.Science 218 (1982) p.467.CrossRefGoogle Scholar
43Kwon, I.C.Bae, Y.H. and Kim, S.W.Nature 354 (1991) p.291.CrossRefGoogle Scholar
44Kumar, G.S. and Neckers, D.C.Chem. Rev. 89 (1989) p.1915.CrossRefGoogle Scholar
45Ueda, M.Kim, H.-B.Ikeda, T. and Ichimura, K.Chem. Mater. 4 (1992) p.1229.CrossRefGoogle Scholar
46Siewierski, L.M.Brittain, W.J.Petrash, S. and Foster, M.D.Langmuir 12 (1996)p. 5838.CrossRefGoogle Scholar
47Ogawa, M.Kurodacd, K. and J.-Moric, I.Chem. Commun. (24)(2000) p.2441.CrossRefGoogle Scholar
48Victor, J.G. and Torkelson, J.M.Macromolecules 20 (1987) p.2241.CrossRefGoogle Scholar