Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-24T03:34:36.190Z Has data issue: false hasContentIssue false

Environment-Assisted Intergranular Cracking

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

Intergranular separation in polycrys-talline materials involves breaking metallic bonds along grain boundaries in response to stress. The surfaces created in this manner expose the grain facets on either side of the original boundary, as shown in Figure 1. This mode of fracture often occurs at much lower fracture stress and energy than cracking by ductile processes through the interior of grains. The exposure of specific materials to certain environments and stress can promote this low-energy, intergranular mode of separation, even when fracture of the same material in vacuum would occur along a ductile transgranu-lar path. Three types of environment-assisted intergranular cracking can occur in a wide variety of alloy/environment systems: intergranular stress-corrosion cracking (IGSCC), intergranular hydrogen embrittlement, and intergranular liquid-metal embrittlement.

Figure 1 shows an example of IGSCC. This type of cracking is a pervasive problem in many technological applications, leading to extensive repairs, loss of service function, and safety concerns. IGSCC occurs in the weld-heat-affected zones of stainless-steel pipes in high-purity primary coolant waters within nuclear power plants, and in nickel-based alloys utilized as heat-exchanger tubing when exposed to the high-purity primary as well as secondary coolant waters in power plants. It is also seen in Al-based alloys used for fuselage skins and structural components in military and commercial aircraft when exposed to humid atmospheric conditions. Ferrous alloys used in the oil and gas industry are also susceptible. For instance, IGSCC of mild steels used in buried gas-transmission pipelines is a widespread international problem, leading to explosions when leaking natural gas ignites.

Type
Corrosion Science
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Howe, J.M., Interfaces in Materials (John Wiley & Sons, New York, 1997).Google Scholar
2.Read, W.T. and Shockley, W., Phys. Rev. 78 (1950) p. 275.CrossRefGoogle Scholar
3.Wolf, D. and Merkle, K.R., in Material Interfaces: Atomic Level Structure and Properties, edited by Wolf, D. and Yip, S. (Chapman and Hall, London, 1992) p. 87.Google Scholar
4.Hondros, E.D. and Seah, M.P., Int. Met. Rev. 222 (22) (1977) p. 262.Google Scholar
5.Hondros, E.D. and Seah, M.P., Metall. Trans. A 8A (1977) p. 1363.CrossRefGoogle Scholar
6.Marcus, P. and Oudar, J., Mater. Sci. Eng. 42 (1980) p. 191.CrossRefGoogle Scholar
7.Latanision, R.M. and Opperhauser, H. Jr., Metall. Trans. A 14A (1974) p. 483.CrossRefGoogle Scholar
8.Bruemmer, S.M., Jones, R.H., Thomas, M.T., and Baer, D.R., Metall. Mater. Trans. A 14A (1983) p. 223.CrossRefGoogle Scholar
9.Jones, R.H., Bruemmer, S.M., Thomas, M.T., and Baer, D.R., Metall. Mater. Trans. A 14A (1983) p. 1729.CrossRefGoogle Scholar
10.Lassila, D.H. and Birnbaum, H.K., Acta Metall. 35 (1987) p. 1815.CrossRefGoogle Scholar
11.Fukushima, H. and Birnbaum, H.K., Acta Metall. 32 (1984) p. 851.CrossRefGoogle Scholar
12.Mulford, R.A., Treatise of Materials Science and Technology, vol. 25 (Academic Press, 1983).Google Scholar
13.Oriani, R.A. and Josephic, P.H., Acta Metall. 22 (1974) p. 1065.CrossRefGoogle Scholar
14.Messmer, R.P. and Briant, C.L., Acta Metall. 30 (1982) p. 457.CrossRefGoogle Scholar
15.Moody, N.R. and Foiles, S.M., in Structure and Properties of Interfaces in Materials, edited by Clark, W.A.T., Dahmen, U., and Briant, C.L. (Mater. Res. Soc. Symp. Proc. 238, Pittsburgh, 1992) p. 381.Google Scholar
16.Robertson, I.M. and Birnbaum, H.K., Acta Metall. 34 (1986) p. 353.CrossRefGoogle Scholar
17.Sirois, E. and Birnbaum, H.K., Acta Metall. 40 (1992) p. 1377.CrossRefGoogle Scholar
18.Aaron, H.B. and Aronson, H.I., Acta Metall. 16 (1968) p. 789.CrossRefGoogle Scholar
19.Galvele, J.R. and DeMicheli, S.M., Corros. Sci. 10 (1970) p. 795.CrossRefGoogle Scholar
20.Muller, I.L. and Galvele, J.R., Acta Metall. 17 (1977) p. 179.Google Scholar
21.Urushino, K. and Sugimoto, K., Acta Metall. 19 (1979) p. 225.Google Scholar
22.Kumai, C., Kusinski, J., Thomas, G., and Devine, T., Corrosion 45 (1989) p. 94.CrossRefGoogle Scholar
23.Bain, E.C., Aborn, R.H., and Rutherford, J.J.B., Trans. Am. Steel Treating Soc. 21 (1933) p. 481.Google Scholar
24.Bruemmer, S.M., Arey, B.W., and Chariot, L.A., Corrosion 48 (1992) p. 42.CrossRefGoogle Scholar
25.Bruemmer, S.M. and Chariot, L.A., Scripta Metall. 20 (1986) p. 1019.CrossRefGoogle Scholar
26.Hall, E.L. and Briant, C.L., Metall. Trans. A 15A (1984) p. 793.CrossRefGoogle Scholar
27.Hondros, E.D. and McLean, D., Philos. Mag. A 29 (1974) p. 771.CrossRefGoogle Scholar
28.Watanabe, T. and Davies, P.W., Philos. Mag. A 37 (1978) p. 649.CrossRefGoogle Scholar
29.Don, J. and Majumdar, S., Acta Metall. 34 (1986) p. 961.CrossRefGoogle Scholar
30.Watanabe, T., Yamada, M., Shima, S., and Karashima, S., Philos. Mag. A 40 (1979) p. 667.CrossRefGoogle Scholar
31.Kargol, J.A. and Albright, D.L., Metall. Trans. A 8 (1977) p. 27.CrossRefGoogle Scholar
32.Arora, O.P. and Metzger, M., Trans. Metall. Soc. AIME 236 (1966) p. 1205.Google Scholar
33.Hasson, G., Boos, J.-Y., Herbeuval, I., Biscondi, M., and Goux, C., Surf. Sci. 31 (1972) p. 115.CrossRefGoogle Scholar
34.Yamashita, M., Mikaki, T., Hashimoto, S., and Miura, S., Philos. Mag. A 63 (1991) p. 695.CrossRefGoogle Scholar
35.Yamashita, M., Mikaki, T., Hashimoto, S., and Miura, S., Philos. Mag. A 63 (1991) p. 707.CrossRefGoogle Scholar
36.Palumbo, G. and Aust, K.T., Acta Metall. Mater. 38 (1990) p. 2343.CrossRefGoogle Scholar
37.Crawford, D.C. and Was, G.S., Metall. Trans A 23A (1992) p. 1195.CrossRefGoogle Scholar
38.Mason, T.A. and Adams, B.L., JOM (October 1994) p. 43.Google Scholar
39.Vermilyea, D.A., J. Electrochem. Soc. 119 (1972) p. 405.CrossRefGoogle Scholar
40.Newman, R.C. and Sieradzki, K., Corros. Sci. 23 (1983) p. 363.CrossRefGoogle Scholar
41.Ortner, S.R. and Randle, V., Scripta Metall. 23 (1989) p. 1903.CrossRefGoogle Scholar
42.Bennett, B.W. and Pickering, H.W., Acta Metall. 36 (1988) p. 539.CrossRefGoogle Scholar
43.Bourcier, R.J., Scully, J.R., and Jones, W.B., “A Probabilistic Model of IGSCC,” in Proc. Symp. on Lifetime Prediction of Corrodible Structures 2, edited by Parkins, R.N. (National Association of Corrosion Engineers, Kauai, HI, 1991) p. 903.Google Scholar
44.Kirchheim, R. and Stolz, U., J. Non-Cryst. Solids 70 (1985) p. 323.CrossRefGoogle Scholar
45.Kirchheim, R., Prog. Mater. Sci. 32 (1988) p. 261.CrossRefGoogle Scholar
46.Angelo, J.E., Moody, N.R., and Baskes, M.I., Model. Sim. Mater. Sci. Eng. 3 (1995) p. 289.CrossRefGoogle Scholar
47.Herrmann, H.J. and Roux, S., Statistical Models for the Fracture of Disordered Media (North-Holland, New York, 1990).Google Scholar
48.Stauffer, D., Introduction to Percolation Theory (Taylor and Francis, London, 1985).CrossRefGoogle Scholar
49.Shante, V.K.S. and Kirkpatrick, S., Adv. Phys. 20 (1991) p. 325.CrossRefGoogle Scholar
50.McLean, D., Grain Boundaries in Metals (Clarendon Press, Oxford, UK, 1957).Google Scholar
51.Wells, D.B., Stewart, J., Herbert, A.W., Scott, P.M., and Williams, P.E., Corrosion 45 (1989) p. 649.CrossRefGoogle Scholar
52.Pan, Y. and Adams, B.L., Scripta Metall. 30 (8) (1994) p. 1055.CrossRefGoogle Scholar
53.Schober, T. and Dieker, C., Metall. Mater. Trans. A 14A (1983) p. 2440.CrossRefGoogle Scholar
54.Yao, J. and Cahoon, J.R., Metall. Mater. Trans. A 21A (1990) p. 603.CrossRefGoogle Scholar
55.Woodruff, D.P. and Delcher, T.A., eds., “Desorption-Spectroscopies,” Modern Techniques in Surface Science (Cambridge University Press, Cambridge, U.K., 1986) p. 279.Google Scholar
56.Choo, W.Y. and Lee, J.Y., Metall. Trans. A 13A (2) (1982) p. 135.CrossRefGoogle Scholar
57.Lee, H.G. and Lee, J.-Y., Acta Metall. 32 (1) (1984) p. 131.CrossRefGoogle Scholar
58.Young, G.A. and Scully, J.R., Scripta Metal. 36 (1997) p. 713.CrossRefGoogle Scholar
59.Lee, S. and Lee, J., Metall. Mater. Trans. A 17A (1986) p. 181.CrossRefGoogle Scholar
60.Johnson, J.T., MS thesis, University of Virginia, 1998.Google Scholar
61.Chen, J.-S., Radmilovic, V., and Devine, T.M., Corros. Sci. 30 (1990) p. 477.CrossRefGoogle Scholar
62.Frankenthal, R.P. and Pickering, H.W., J. Electrochem. Soc. 120 (1973) p. 23.CrossRefGoogle Scholar
63.Devine, T.M., Acta Metall. 36 (1988) p. 1491.CrossRefGoogle Scholar
64.Gaudett, M.A. and Scully, J.R., J. Electrochem. Soc. 140 (1993) p. 3425.CrossRefGoogle Scholar
65.Gaudett, M.A. and Scully, J.R., Metal. Mater. Trans. A 25A (1994) p. 775.CrossRefGoogle Scholar
66.Oriani, R.A., Corros. J. 43 (1987) p. 390.CrossRefGoogle Scholar
67.Durrett, R. and Schonmann, R.H., Ami. Prob. 77 (1988) p. 583.Google Scholar
68.Efros, A.L., Physics and Geometry of Disorder: Percolation Theory (Mir Publishers, Moscow, 1986).Google Scholar