Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-24T08:32:16.208Z Has data issue: false hasContentIssue false

Environmental (S)TEM Studies of Gas–Liquid–Solid Interactions under Reaction Conditions

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

We review the development of time-resolved, high-resolution environmental scanning/ transmission electron microscopy [E(S)TEM] for directly probing dynamic gas–solid, liquid–solid, and gas–liquid–solid interactions at the atomic level. Unlike a regular TEM, such a microscope allows us to use high gas pressures (up to 40 mbars) in the sample region. The unique information available from experiments performed using E(S)TEM has enabled visualization of the dynamic nature of nanostructures during reactions. Such information can be directly applied to the development of advanced nanomaterials such as carbon nanotubes, silicon nanowires and processes, including the design of novel routes to polymers synthesis, and has aided in the identification of important phenomena during catalysis, chemical vapor deposition, and electrochemical deposition.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Swann, P.R., Tighe, N.J., Jern. Ann. 155, 251 (1971).Google Scholar
2.Baker, R.T., Harris, P.S., Thomas, R.B., Waite, R.J., J. Catal. 30, 86 (1973).CrossRefGoogle Scholar
3.Gai, P.L., Thoni, W., Hirsch, P.B., Philos. Mag. 35, 781 (1979).Google Scholar
4.Butler, E.P., Hale, K.F., Dynamic Experiments (North Holland, Amsterdam, 1981).Google Scholar
5.Gai (-Boyes), P.L., Catal. Rev. Sci. Eng. 34, 1 (1992).CrossRefGoogle Scholar
6.Robertson, I.M., Teter, D., Microsc. Res. Tech. 42, 260 (1998).3.0.CO;2-U>CrossRefGoogle Scholar
7.Sharma, R., Microsc. Microan. 7, 494 (2001).CrossRefGoogle Scholar
8.Parkinson, G.M., Catal. Lett. 2, 303 (1989).CrossRefGoogle Scholar
9.Doole, R.C., Parkinson, G.M., Stead, J.M., Inst. Phys. Conf. Ser. 119, 157 (1991).Google Scholar
10.Gai, P.L., Philos. Mag. 43, 841 (1981); and J. Solid State Chem. 49, 25 (1983).CrossRefGoogle Scholar
11.Gai, P.L., Smith, B.C., Nature 348, 430 (1990).Google Scholar
12.Gai, P.L., McCarron, E.M., Science 247, 553 (1990).CrossRefGoogle Scholar
13.Gai, P.L., Smith, B.C., Ultramicroscopy 34, 17 (1990).CrossRefGoogle Scholar
14.Crozier, P.A., Sharma, R., Datye, A.K., Microsc. Microan. 4, 278 (1998).CrossRefGoogle Scholar
15.Sayagués, M.J., Hutchison, J.L., J. Solid State Chem. 143, 33 (1999).CrossRefGoogle Scholar
16.Sharma, R., Schweda, E., Naedele, D., Chem. Mater. 13, 4014 (2001).CrossRefGoogle Scholar
17.Oleshko, V.P., Crozier, P.A., Cantrell, R.D., Westwood, A.D., J. Electron. Microsc. 51, S27 (2002) (Suppl.).CrossRefGoogle Scholar
18.Drucker, J., Sharma, R., Kouvetakis, J., Weiss, J.K., J. Appl. Phys. 77, 2846 (1995).CrossRefGoogle Scholar
19.Crozier, P.A., Tolle, J., Kouvetakis, J., Ritter, C., Appl. Phys. Lett. 84, 3441 (2004).CrossRefGoogle Scholar
20.van Dorp, W., van Someren, R., Hagen, C., Kruit, P., Crozier, P.A., Nano Lett. 5, 1303 (2005).CrossRefGoogle Scholar
21.Sharma, R., McKelvy, M.J., Béarat, H., Chizmeshya, A.V.G., Carpenter, R.W., Philos. Mag. 84, 2711 (2004).CrossRefGoogle Scholar
22.McKelvy, M.J., Sharma, R., Chizmeshya, A.V.G., Carpenter, R.W., Streib, K., Chem. Mater. 13, 921 (2001).CrossRefGoogle Scholar
23.Liu, R.-J., Crozier, P.A., Smith, C.M., Hucul, D., Blackson, J., Salaita, G., Appl. Catal. A 282, 111 (2005).CrossRefGoogle Scholar
24.Gai, P.L., Kourtakis, K., et al., Science 267, 661 (1995).CrossRefGoogle Scholar
25.Boyes, E.D., Gai, P.L., Ultramicroscopy 67, 219 (1997).CrossRefGoogle Scholar
26.Sharma, R., Crozier, P.A., Transmission Electron Microscopy for Nanotechnology, Wang, Z.L., Ed., 531 (Springer-Verlag and Tsinghua University Press, 2005).Google Scholar
27.Lopez-Cartes, C., Bernal, S., Calvino, J.J., Cauqui, M., Blanco, G., Perez-Omil, J., Pintado, J., Helveg, S., Hansen, P.L., Chem. Comm. 644 (2003).CrossRefGoogle Scholar
28.Haggin, J., Am. Chem. Soc. Chem. Eng. News 73 (30), 39 (1995).CrossRefGoogle Scholar
29.Jacoby, M., Am. Chem. Soc. Chem. Eng. News 80 (31), 26 (2002).CrossRefGoogle Scholar
30.Gai, P.L., Kourtakis, K., Boyes, E.D., Catal. Lett. 102, 1 (2005).CrossRefGoogle Scholar
31.Gai, P.L., Microsc. Microan. 8, 21 (2002).CrossRefGoogle Scholar
32.Gai, P.L., Boyes, E.D., Electron Microscopy in Heterogeneous Catalysis (Institute of Physics Publ., UK, USA, 2003).CrossRefGoogle Scholar
33.Thomas, J.M., Gai, P.L., Adv. Catal. 48, 171 (2004).CrossRefGoogle Scholar
34.Gai, P.L., Torardi, C.C., Boyes, E.D., Ch. 45, 745: Turning Points in Soid State Chemistry, (Eds: Harris, K.D.M. and Edwards, P.P.), Royal Society of Chemistry U.K. (2007).Google Scholar
35.Wang, R., Crozier, P.A., Sharma, R., Adams, J., J. Phys. Chem. B 110, 18278 (2006).CrossRefGoogle Scholar
36.Hansen, T.W., Wagner, J., Hansen, P.L., Dahl, S., Topsoe, H., Jacobsen, J., Science 294, 1504 (2001).CrossRefGoogle Scholar
37.Sharma, R., Crozier, P.A., Kang, Z.C., Eyring, L., Philos. Mag. 84, 2731 (2004).CrossRefGoogle Scholar
38.Hawkes, P.W., Spence, J.C., Eds., Science of Microscopy (Springer, 2006).Google Scholar
39.Helveg, S., Lopez-Cartes, C., Sehested, J., Hansen, P.L., Clausen, B., Rostrup-Nielsen, J., Abild-Pedersen, F., Norskov, J., Nature 427, 426 (2004).CrossRefGoogle Scholar
40.Hofmann, S.R., Sharma, R., Ducati, C., Du, G., Mattevi, C., Cepek, C., Cantoro, M., Pisana, S., Parvez, A., Cervantes-Sodi, F., Ferrari, A.C., Dunin-Borkowski, R., Lizzit, S., Petaccia, L., Goldoni, A., Robertson, J., Nano Lett. 7, 602 (2007).CrossRefGoogle Scholar
41.Sharma, R., Rez, P., Brown, M., Du, G.H., Treacy, M.M.J., Nanotechnology 18, 125602 (2007).CrossRefGoogle Scholar
42.Ross, F.M., Tersoff, J., Reuter, M.C., Phys. Rev. Lett. 95, 146104 (2005).CrossRefGoogle Scholar
43.Wagner, R.S., Ellis, W.C., Appl. Phys. Lett. 4, 89 (1964).CrossRefGoogle Scholar
44.Kodambaka, S., Tersoff, J., Reuter, M.C., Ross, F.M., Phys. Rev. Lett. 96, 096105 (2006).CrossRefGoogle Scholar
45.Hannon, J.B., Kodambaka, S., Ross, F.M., Tromp, R.M., Nature 440, 45 (2006).CrossRefGoogle Scholar
46.Kodambaka, S., Tersoff, J., Reuter, M.C., Ross, F.M., Science 316, 729 (2007).CrossRefGoogle Scholar
47.Dick, K.A., Kodambaka, S., Reuter, M.C., Deppert, K., Samuelson, L., Seifert, W., Wallenberg, L.R., Ross, F.M., Nano Lett. 7, 1817 (2007).CrossRefGoogle Scholar
48.Williamson, M.J., Tromp, R.M., Vereecken, P.M., Hull, R., Ross, F.M., Nat. Mater. 2, 532 (2003).CrossRefGoogle Scholar
49.Radisic, A., Vereecken, P.M., Hannon, J.B., Searson, P.C., Ross, F.M., Nano Lett. 6, 238 (2006).CrossRefGoogle Scholar
50.Radisic, A., Vereecken, P.M., Searson, P.C., Ross, F.M., Surf. Sci. 600, 1817 (2006).CrossRefGoogle Scholar
51.Radisic, A., Ross, F.M., Searson, P.C., J. Phys. Chem. B 110, 7862 (2006).CrossRefGoogle Scholar