Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-24T12:38:33.920Z Has data issue: false hasContentIssue false

Enhanced Light Transmission through Subwavelength Holes

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

The transmission of light through a hole was thought to be very weak when all of the lateral dimensions of the hole were much smaller than the wavelength of the light.The discovery of enhanced transmission has changed this view, raising fundamental questions and leading to many practical applications ranging from photonics to chemical sensing. A key feature of the transmission process is the activation of surface plasmons. In this article, we review the present understanding of this phenomenon and illustrate its potential through several examples of applications in different fields.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Raether, H., Surface Plasmons (Springer-Verlag, Berlin, 1988).Google Scholar
2.Barnes, W.L., Dereux, A., and Ebbesen, T.W., Nature 424 (2003) p. 824.CrossRefGoogle Scholar
3.Coutaz, J.L., Nevière, M., Pic, E., and Reinisch, R., Phys. Rev. B 32 (1985) p. 2227.CrossRefGoogle Scholar
4.García-Vidal, F.J. and Pendry, J.B., Phys. Rev. Lett. 77 (1996) p. 1163.CrossRefGoogle Scholar
5.Xu, H., Bjerneld, E. J., Käll, M., and Börjesson, L., Phys. Rev. Lett. 83 (1999) p. 4357.CrossRefGoogle Scholar
6.Ebbesen, T.W., Lezec, H.J., Ghaemi, H.F., Thio, T., and Wolff, P.A., Nature 391 (1998) p. 667.CrossRefGoogle Scholar
7.Bethe, H.A., Phys. Rev. 66 (1944) p. 163.CrossRefGoogle Scholar
8.Roberts, A., J. Opt. Soc. Am. A 4 (1987) p. 1970.CrossRefGoogle Scholar
9.Ghaemi, H.F., Thio, T., Grupp, D.E., Ebbesen, T.W., and Lezec, H.J., Phys. Rev. B 58 (1998) p. 6779.CrossRefGoogle Scholar
10.Porto, J.A., García-Vidal, F.J., and Pendry, J.B., Phys. Rev. Lett. 83 (1999) p. 2845.CrossRefGoogle Scholar
11.Popov, E., Nevière, M., Enoch, S., and Reinisch, R., Phys. Rev. B 62 (2000) p. 16100.CrossRefGoogle Scholar
12.Martín-Moreno, L., García-Vidal, F.J., Lezec, H.J., Pellerin, K.M., Thio, T., Pendry, J.B., and Ebbesen, T.W., Phys. Rev. Lett. 86 (2001) p. 1114.CrossRefGoogle Scholar
13.Krishnan, A., Thio, T., Kim, T.J., Lezec, H.J., Ebbesen, T.W., Wolff, P.A., Pendry, J., Martín-Moreno, L., and García-Vidal, F.J., Opt. Commun. 200 (2001) p. 1.CrossRefGoogle Scholar
14.Martín-Moreno, L. and García-Vidal, F.J., Opt. Express 12 (2004) p. 3619.CrossRefGoogle Scholar
15.Degiron, A., Lezec, H.J., Barnes, W.L., and Ebbesen, T.W., Appl. Phys. Lett. 81 (2002) p. 4327.CrossRefGoogle Scholar
16.Barnes, W.L., Murray, W.A., Dintinger, J., Devaux, E., and Ebbesen, T.W., Phys. Rev. Lett. 92 107401 (2004).CrossRefGoogle Scholar
17.Kim, D.S., Hohng, S.C., Malyarchuk, V., Yoon, Y.C., Ahn, Y.H., Yee, K.J., Park, J.W., Kim, J., Park, Q.H., and Lienau, C., Phys. Rev. Lett. 91 143901(2003).CrossRefGoogle Scholar
18.Genet, C., van Exter, M.P., and Woerdman, J.P., Opt. Commun. 225 (2003) p. 331.CrossRefGoogle Scholar
19.Sarrazin, M., Vigneron, J.-P., and Vigoureux, J.-M., Phys. Rev. B 67 085415 (2003).CrossRefGoogle Scholar
20.Vigoureux, J.-M., Opt. Commun. 198 (2001) p. 257.CrossRefGoogle Scholar
21.Müller, R., Malyarchuk, V., and Lienau, C., Phys. Rev. B 68 205415(2003).CrossRefGoogle Scholar
22.Müller, R., Ropers, C., and Lienau, C., Opt. Express 12 (2004) p. 5067.CrossRefGoogle Scholar
23.Hibbins, A.P. and Sambles, J.R., Appl. Phys. Lett. 81 (2002) p. 4661.CrossRefGoogle Scholar
24.Lockyear, J., Hibbins, A. P., and Sambles, J.R., Appl. Phys. Lett. 84 (2004) p. 2040.CrossRefGoogle Scholar
25.Rivas, J. Gómez, Schotsch, C., Bolivar, P. Haring, and Kurz, H., Phys. Rev. B 68 201306(R) (2003).Google Scholar
26.Cao, H. and Nahata, A., Opt. Express 12 (2004) p. 1004.CrossRefGoogle Scholar
27.Miyamaru, F. and Hangyo, M., Appl. Phys. Lett. 84 (2004) p. 2742.CrossRefGoogle Scholar
28.Beruete, M., Sorolla, M., Campillo, I., Dolado, J.S., Martín-Moreno, L., Bravo-Abad, J., and García-Vidal, F.J., Opt. Lett. 29 (2004) p. 2500.CrossRefGoogle Scholar
29.Martín-Moreno, L., García-Vidal, F.J., Lezec, H.J., Degiron, A., and Ebbesen, T.W., Phys. Rev. Lett. 90 167401(2003).CrossRefGoogle Scholar
30.Pendry, J.B., Martín-Moreno, L., and García-Vidal, F.J., Science 305 (2004) p. 847.CrossRefGoogle Scholar
31.Sarrazin, M. and Vigneron, J.-P., Phys. Rev. E 68 016603 (2003).CrossRefGoogle Scholar
32.Thio, T., Pellerin, K.M., Linke, R.A., Lezec, H.J., and Ebbesen, T.W., Opt. Lett. 26 (2001) p. 1972.CrossRefGoogle Scholar
33.Thio, T., Lezec, H.J., Ebbesen, T.W., Pellerin, K.M., Lewen, G.D., Nahata, A., and Linke, R.A., Nanotechnology 13 (2002) p. 429.CrossRefGoogle Scholar
34.Lezec, H.J., Degiron, A., Devaux, E., Linke, R.A., Martín-Moreno, L., García-Vidal, F.J., and Ebbesen, T.W., Science 297 (2002) p. 820.CrossRefGoogle Scholar
35.Degiron, A., Przybilla, F., Genet, C., and Ebbesen, T.W., unpublished.Google Scholar
36.Kim, T.J., Thio, T., Ebbesen, T.W., Grupp, D.E., and Lezec, H.J., Opt. Lett. 24 (1999) p. 256.CrossRefGoogle Scholar
37.Ebbesen, T.W., Grupp, D.E., Thio, T., and Lezec, H.J., “Enhanced optical transmission apparatus utilizing metal films having apertures and periodic surface topography,” U.S. Patent No. 6,236,033 (May 22, 2001).Google Scholar
38.Luo, X. and Ishihara, T., Appl. Phys. Lett. 84 (2004) p. 4780.CrossRefGoogle Scholar
39.Fujikata, J., Ishi, T., Yokota, H., Kato, K., Yanagisawa, M., Nakada, M., Ishihara, K., Ohashi, K., Thio, T., and Linke, R.A., Trans. Magn. Soc. Jpn. 4 (2004) p. 255.CrossRefGoogle Scholar
40.Shinada, S., Hashizume, J., and Koyama, F., Appl. Phys. Lett. 83 (2003) p. 836.CrossRefGoogle Scholar
41.Devaux, E., Ebbesen, T.W., Weeber, J.-C., and Dereux, A., Appl. Phys. Lett. 83 (2003) p. 4936.CrossRefGoogle Scholar
42.Nahata, A., Linke, R.A., Ishi, T., and Ohashi, K., Opt. Lett. 28 (2003) p. 423.CrossRefGoogle Scholar
43.Liu, Y. and Blair, S., Opt. Lett. 28 (2003) p. 507.CrossRefGoogle Scholar
44.Liu, Y. and Blair, S., Opt. Express 12 (2004) p. 3686.CrossRefGoogle Scholar
45.Liu, Y., Bishop, J., Williams, L., Blair, S., and Herron, J., Nanotechnology 15 (2004) p. 1368.CrossRefGoogle Scholar
46.Brolo, A.G., Gordon, R., Leathem, B., and Kavanagh, K.L., Langmuir 20 (2004) p. 4813.CrossRefGoogle Scholar
47.Williams, S.M., Stafford, A.D., Rodriguez, K.R., Rogers, T.M., and Coe, J.V., J. Phys. Chem. B 107 (2003) p. 11871.CrossRefGoogle Scholar
48.Williams, S.M., Rodriguez, K.R., Teeters-Kennedy, S., Stafford, A.D., Bishop, S.R., Lincoln, U.K., and Coe, J.V., J. Phys. Chem. B 108 (2004) p. 11833.CrossRefGoogle Scholar
49.Dintinger, J., Klein, S., Bustos, F., Barnes, W.L., and Ebbesen, T.W., Phys. Rev. B 71 035424 (2005).CrossRefGoogle Scholar
50.Brolo, A.G., Arctander, E., Gordon, R., Leathem, B., and Kavanagh, K.L., Nanoletters 4 (2004) p. 2015.CrossRefGoogle Scholar