Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-12T21:27:52.610Z Has data issue: false hasContentIssue false

Energy materials for transient power sources

Published online by Cambridge University Press:  10 February 2020

Xiaoteng Jia
Affiliation:
State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, China; [email protected]
Caiyun Wang
Affiliation:
Intelligent Polymer Research Institute/ARC Centre of Excellence for Electromaterials Science, University of Wollongong, Australia; [email protected]
Chong-Yong Lee
Affiliation:
Intelligent Polymer Research Institute/ARC Centre of Excellence for Electromaterials Science, University of Wollongong, Australia; [email protected]
Changchun Yu
Affiliation:
School of Ophthalmology and Optometry, Wenzhou Medical University, China; [email protected]
Gordon G. Wallace
Affiliation:
ARC Centre of Excellence for Electromaterials Science, Australian National Fabrication Facility (Materials Node), and Intelligent Polymer Research Institute, Australia; [email protected]
Get access

Abstract

Transient energy supply remains one of the key challenges limiting the development of transient implantable medical devices for monitoring, diagnosis, and treatment of diseases within a predetermined time frame. A key feature of such devices is their controllable degradation during service life. An on-board transient energy supply with predictable performance over time is required to drive transient electronics. In this article, we present recent advances in the development of materials for biodegradable energy-storage devices (batteries and supercapacitors) and biodegradable energy-harvesting systems (enzymatic biofuel cells and triboelectric nanogenerators). Future perspectives, challenges, and opportunities related to energy materials for transient power sources will also be summarized.

Type
Transient Electronic Devices
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Li, R., Wang, L., Kong, D., Yin, L., Bioact. Mater. 3, 322 (2018).CrossRefGoogle Scholar
Bettinger, C.J., Trends Biotechnol . 33, 575 (2015).CrossRefGoogle Scholar
Kim, A., Ochoa, M., Rahimi, R., Ziaie, B., IEEE Access 3, 89 (2015).CrossRefGoogle Scholar
Stauss, S., Honma, I., Bull. Chem. Soc. Jpn. 91, 492 (2018).CrossRefGoogle Scholar
Kang, S.-K., Koo, J., Lee, Y.K., Rogers, J.A., Acc. Chem. Res. 51, 988 (2018).CrossRefGoogle Scholar
Cha, G.D., Kang, D., Lee, J., Kim, D.-H., Adv. Healthc. Mater. 8, 1801660 (2019).CrossRefGoogle Scholar
Yu, X., Shou, W., Mahajan, B.K., Huang, X., Pan, H., Adv. Mater. 30, 1707624 (2018).CrossRefGoogle Scholar
Mackay, R.S., Jacobson, B., Nature 179, 1239 (1957).CrossRefGoogle Scholar
Pedersen, P.B., Vilmann, P., Bar-Shalom, D., Müllertz, A., Baldursdottir, S., Eur. J. Pharm. Biopharm. 85, 958 (2013).CrossRefGoogle Scholar
Yin, L., Huang, X., Xu, H., Zhang, Y., Lam, J., Cheng, J., Rogers, J.A., Adv. Mater. 26, 3879 (2014).CrossRefGoogle Scholar
Huang, X., Wang, D., Yuan, Z., Xie, W., Wu, Y., Li, R., Zhao, Y., Luo, D., Cen, L., Chen, B., Wu, H., Xu, H., Sheng, X., Zhang, M., Zhao, L., Yin, L., Small 14, 1800994 (2018).CrossRefGoogle ScholarPubMed
Tsang, M., Armutlulu, A., Martinez, A.W., Allen, S.A.B., Allen, M.G., Microsyst. Nanoeng. 1, 15024 (2015).CrossRefGoogle Scholar
Tsang, M., Armutlulu, A., Herrault, F., Shafer, R.H., Allen, S.A.B., Allen, M.G., J. Microelectromech. Syst. 23, 1281 (2014).CrossRefGoogle Scholar
Witte, F., Acta Biomater . 6, 1680 (2010).CrossRefGoogle Scholar
Kong, Y., Wang, C., Yang, Y., Too, C.O., Wallace, G.G., Synth. Met. 162, 584 (2012).CrossRefGoogle Scholar
Yu, C., Wang, C., Liu, X., Jia, X., Naficy, S., Shu, K., Forsyth, M., Wallace, G.G., Adv. Mater. 28, 9349 (2016).CrossRefGoogle ScholarPubMed
Jia, X., Wang, C., Zhao, C., Ge, Y., Wallace, G.G., Adv. Funct. Mater. 26, 1454 (2016).CrossRefGoogle Scholar
Jia, X., Wang, C., Ranganathan, V., Napier, B., Yu, C., Chao, Y., Forsyth, M., Omenetto, F.G., MacFarlane, D.R., Wallace, G.G., ACS Energy Lett . 2, 831 (2017).CrossRefGoogle Scholar
Jia, X., Yang, Y., Wang, C., Zhao, C., Vijayaraghavan, R., MacFarlane, D.R., Forsyth, M., Wallace, G.G., ACS Appl. Mater. Interfaces 6, 21110 (2014).CrossRefGoogle Scholar
Jia, X., Ge, Y., Shao, L., Wang, C., Wallace, G.G., ACS Sustain. Chem. Eng. 7, 14321 (2019).CrossRefGoogle Scholar
Kim, Y.J., Wu, W., Chun, S.-E., Whitacre, J.F., Bettinger, C.J., Proc. Natl. Acad. Sci. U.S.A. 110, 20912 (2013).CrossRefGoogle Scholar
Kim, Y.J., Khetan, A., Wu, W., Chun, S.-E., Viswanathan, V., Whitacre, J.F., Bettinger, C.J., Adv. Mater. 28, 3173 (2016).CrossRefGoogle ScholarPubMed
Kim, Y.J., Wu, W., Chun, S.-E., Whitacre, J.F., Bettinger, C.J., Adv. Mater. 26, 6572 (2014).CrossRefGoogle Scholar
Robinson, D.L., Hermans, A., Seipel, A.T., Wightman, R.M., Chem. Rev. 108, 2554 (2008).CrossRefGoogle Scholar
Milroy, C.A., Manthiram, A., ACS Energy Lett . 1, 672 (2016).CrossRefGoogle Scholar
Sun, T., Li, Z.-j., Wang, H.-g., Bao, D., Meng, F.-I., Zhang, X.-b., Angew. Chem. Int. Ed. Engl. 55, 10662 (2016).CrossRefGoogle Scholar
Zhang, L.L., Zhao, X.S., Chem. Soc. Rev. 38, 2520 (2009).CrossRefGoogle Scholar
He, S.S., Hu, Y.J., Wan, J.X., Gao, Q., Wang, Y.H., Xie, S.L., Qiu, L.B., Wang, C.C., Zheng, G.F., Wang, B.J., Peng, H.S., Carbon 122, 162 (2017).CrossRefGoogle Scholar
Lee, G., Kang, S.-K., Won, S.M., Gutruf, P., Jeong, Y.R., Koo, J., Lee, S.-S., Rogers, J.A., Ha, J.S., Adv. Energy Mater. 7, 1700157 (2017).CrossRefGoogle Scholar
Li, H., Zhao, C., Wang, X., Meng, J., Zou, Y., Noreen, S., Zhao, L., Liu, Z., Ouyang, H., Tan, P., Yu, M., Fan, Y., Wang, Z.L., Li, Z., Adv. Sci. 6, 1801625 (2019).CrossRefGoogle Scholar
Kumar, P., Di Mauro, E., Zhang, S., Pezzella, A., Soavi, F., Santato, C., Cicoira, F., J. Mater. Chem. C 4, 9516 (2016).CrossRefGoogle Scholar
Di Mauro, E., Xu, R., Soliveri, G., Santato, C., MRS Commun. 7, 141 (2017).CrossRefGoogle Scholar
Colherinhas, G., Malaspina, T., Fileti, E.E., ACS Omega 3, 13869 (2018).CrossRefGoogle Scholar
Landi, G., Sorrentino, A., Fedi, F., Neitzert, H.C., Iannace, S., Nano Energy 17, 348 (2015).CrossRefGoogle Scholar
Mosa, I.M., Pattammattel, A., Kadimisetty, K., Pande, P., El-Kady, M.F., Bishop, G.W., Novak, M., Kaner, R.B., Basu, A.K., Kumar, C.V., Rusling, J.F., Adv. Energy Mater. 7, 1700358 (2017).CrossRefGoogle Scholar
Kim, J., Jeerapan, I., Ciui, B., Hartel, M.C., Martin, A., Wang, J., Adv. Healthc. Mater. 6, 1700770 (2017).CrossRefGoogle Scholar
Wang, X., Xu, W., Chatterjee, P., Lv, C., Popovich, J., Song, Z., Dai, L., Kalani, M.Y.S., Haydel, S.E., Jiang, H., Adv. Mater. Technol. 1, 1600059 (2016).CrossRefGoogle Scholar
Katz, E., MacVittie, K., Energy Environ. Sci. 6, 2791 (2013).CrossRefGoogle Scholar
Mano, N., Mao, F., Heller, A., J. Am. Chem. Soc. 125, 6588 (2003).CrossRefGoogle Scholar
Cinquin, P., Gondran, C., Giroud, F., Mazabrard, S., Pellissier, A., Boucher, F., Alcaraz, J.-P., Gorgy, K., Lenouvel, F., Mathé, S., Porcu, P., Cosnier, S., PLoS One 5, e10476 (2010).CrossRefGoogle Scholar
Cosnier, S., Le Goff, A., Holzinger, M., Electrochem. Commun. 38, 19 (2014).CrossRefGoogle Scholar
Sales, F.C.P.F., Iost, R.M., Martins, M.V.A., Almeida, M.C., Crespilho, F.N., Lab Chip 13, 468 (2013).CrossRefGoogle Scholar
Rasmussen, M., Ritzmann, R.E., Lee, I., Pollack, A.J., Scherson, D., J. Am. Chem. Soc. 134, 1458 (2012).CrossRefGoogle Scholar
Szczupak, A., Halámek, J., Halámková, L., Bocharova, V., Alfonta, L., Katz, E., Energy Environ. Sci. 5, 8891 (2012).CrossRefGoogle Scholar
Halámková, L., Halámek, J., Bocharova, V., Szczupak, A., Alfonta, L., Katz, E., J. Am. Chem. Soc. 134, 5040 (2012).CrossRefGoogle Scholar
MacVittie, K., Halámek, J., Halámková, L., Southcott, M., Jemison, W.D., Lobel, R., Katz, E., Energy Environ. Sci. 6, 81 (2013).CrossRefGoogle Scholar
Gross, A.J., Holzinger, M., Cosnier, S., Energy Environ. Sci. 11, 1670 (2018).CrossRefGoogle Scholar
Agnès, C., Holzinger, M., Le Goff, A., Reuillard, B., Elouarzaki, K., Tingry, S., Cosnier, S., Energy Environ. Sci. 7, 1884 (2014).CrossRefGoogle Scholar
Zebda, A., Alcaraz, J.-P., Vadgama, P., Shleev, S., Minteer, S.D., Boucher, F., Cinquin, P., Martin, D.K., Bioelectrochemistry 124, 57 (2018).CrossRefGoogle Scholar
Zheng, Q., Shi, B., Li, Z., Wang, Z.L., Adv. Sci. 4, 1700029 (2017).CrossRefGoogle Scholar
Zheng, Q., Zou, Y., Zhang, Y., Liu, Z., Shi, B., Wang, X., Jin, Y., Ouyang, H., Li, Z., Wang, Z.L., Sci. Adv. 2, e1501478 (2016).CrossRefGoogle Scholar
Jiang, W., Li, H., Liu, Z., Li, Z., Tian, J., Shi, B., Zou, Y., Ouyang, H., Zhao, C., Zhao, L., Sun, R., Zheng, H., Fan, Y., Wang, Z.L., Li, Z., Adv. Mater. 30, 1801895 (2018).CrossRefGoogle Scholar
Pan, R., Xuan, W., Chen, J., Dong, S., Jin, H., Wang, X., Li, H., Luo, J., Nano Energy 45, 193 (2018).CrossRefGoogle Scholar
Wang, R., Gao, S., Yang, Z., Li, Y., Chen, W., Wu, B., Wu, W., Adv. Mater. 30, 1706267 (2018).CrossRefGoogle Scholar