Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-28T01:01:57.207Z Has data issue: false hasContentIssue false

Empowering plasmonics and metamaterials technology with new material platforms

Published online by Cambridge University Press:  09 May 2014

Alexandra Boltasseva*
Affiliation:
School of Electrical and Computer Engineering and Birck Nanotechnology Center, Purdue University, and the Technical University of Denmark; [email protected]
Get access

Abstract

In recent years, the emerging areas of nanophotonics and, in particular, plasmonics and metamaterials, have seen an explosion of novel ideas. However, transforming revolutionary designs into practical devices requires a significant amount of effort. The constituent materials in plasmonic structures and metamaterials play a crucial role in realizing useful and efficient devices. Similar to the way silicon shaped the nanoelectronics field, finding the best set of materials for plasmonic and metamaterial devices could revolutionize the field of nanophotonics. As a potential solution, alternative plasmonic materials have recently gained significant attention. Metals, despite being essential components of plasmonic and metamaterial devices, pose many technological challenges toward the realization of practical devices—primarily due to their high optical loss, integration, and fabrication limitations. Hence, searching for an alternative is vital to the success of future nanophotonic devices. Several classes of materials, including doped semiconductor oxides and ceramics, are discussed as potential alternatives to metals that could lead to devices with drastically improved performance and new functionalities by providing low intrinsic loss, tunability, and compatibility with standard semiconductor fabrication processes.

Type
Research Article
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Smith, D., Pendry, J., Wiltshire, M., Science 305, 788 (2004).CrossRefGoogle Scholar
Cai, W., Shalaev, V., Optical Metamaterials: Fundamentals and Applications (Springer Verlag, NY, 2009).Google Scholar
Pendry, J.B., Schurig, D., Smith, D.R., Science 312, 1780 (2006).Google Scholar
Boltasseva, A., Atwater, H.A., Science 331, 290 (2011).Google Scholar
Lal, S., Link, S., Halas, N.J., Nat. Photonics 1, 641 (2008).Google Scholar
Maier, S.A., Plasmonics: Fundamentals and Applications (Springer Verlag, NY, 2007).Google Scholar
Atwater, H.A., Sci. Am. 296, 56 (2007).Google Scholar
Brongersma, M.L., Shalaev, V.M., Science 328, 440 (2010).Google Scholar
Schuller, J.A., Barnard, E.S., Cai, W., Jun, Y.C., White, J.S., Brongersma, M.L., Nat. Mater. 9, 193 (2010).CrossRefGoogle Scholar
Engheta, N., Science 317, 1698 (2007).Google Scholar
Podolskiy, V.A., Narimanov, E.E., Phys. Rev. B 71, 201101 (2005).Google Scholar
Naik, G.V., Shalaev, V.M., Boltasseva, A., Adv. Mater. 25 (24), 3264 (2013).Google Scholar
West, P.R., Ishii, S., Naik, G.V., Emani, N.K., Shalaev, V.M., Boltasseva, A., Laser Photonics Rev. 4, 795 (2010).Google Scholar
Khurgin, J.B., Sun, G., Appl. Phys. Lett. 96, 181102 (2010).CrossRefGoogle Scholar
Khurgin, J.B., Boltasseva, A., MRS Bull. 37 (8), 768 (2012).Google Scholar
Hoffman, A.J., Alekseyev, L., Howard, S.S., Franz, K.J., Wasserman, D., Podolskiy, V.A., Narimanov, E.E., Sivco, D.L., Gmachl, C., Nat. Mater. 6, 946 (2007).CrossRefGoogle Scholar
Law, S., Podolskiy, V., Wasserman, D., Nanophotonics 2 (2), 103 (2013).Google Scholar
Naik, G.V., Liu, J., Kildishev, A.V., Shalaev, V.M., Boltasseva, A., Proc. Natl. Acad. Sci. U.S.A. 109, 8834 (2012).Google Scholar
Naik, G.V., Kim, J., Boltasseva, A., Opt. Mater. Express 1, 1090 (2011).Google Scholar
Kim, J., Naik, G.V., Emani, N.K., Guler, U., Boltasseva, A., IEEE J. Sel. Top. Quantum Electron. 19 (3), 4601907 (2013).Google Scholar
Frölich, A., Wegener, M., Opt. Mater. Express 1, 883 (2011).Google Scholar
Garcia, G., Buonsanti, R., Runnerstrom, E.L., Mendelsberg, R.J., Llordes, A., Anders, A., Richardson, T.J., Milliron, D.J., Nano Lett. 11, 4415 (2011).CrossRefGoogle Scholar
Li, S.Q., Guo, P., Zhang, L., Zhou, W., Odom, T.W., Seideman, T., Ketterson, J.B., Chang, R.P.H., ACS Nano 5, 9161 (2011).Google Scholar
Jacob, Z., Kim, J., Naik, G.V., Narimanov, E.E., Boltasseva, A., Shalaev, V.M., Appl. Phys. 100, 215 (2010).Google Scholar
Lounis, B., Orrit, M., Rep. Prog. Phys. 68, 1129 (2005).Google Scholar
Jacob, Z., Smolyaninov, I.I., Narimanov, E.E., Appl. Phys. Lett. 100, 181105 (2012).Google Scholar
Naik, G.V., Saha, B., Liu, J., Saber, S.M., Stach, E., Irudayaraj, J.M.K., Sands, T.D., Shalaev, V.M., Boltasseva, A., Proc. Nat. Acad. Sci. U.S.A., accepted for publication (2013).Google Scholar