Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-30T23:11:08.064Z Has data issue: false hasContentIssue false

Emerging operando and x-ray pair distribution function methods for energy materials development

Published online by Cambridge University Press:  14 March 2016

Karena W. Chapman*
Affiliation:
Argonne National Laboratory, USA; [email protected]
Get access

Abstract

Our energy needs drive widespread materials research. Advances in materials characterization are critical to this research effort. Using new characterization tools that allow us to probe the atomic structure of energy materials in situ as they operate, we can identify how their structure is linked to their functional properties and performance. These fundamental insights serve as a roadmap to enhance performance in the next generation of advanced materials. In the last decade, developments in synchrotron instrumentation have made the pair distribution function (PDF) method and operando x-ray studies more readily accessible tools capable of providing valuable insights into complex materials systems. Here, the emergence of the PDF method as a versatile structure characterization tool and the further enhancement of this method through developments in operando capabilities and multivariate data analytics are described. These advances in materials characterization are demonstrated by several highlighted studies focused on energy storage in batteries.

Type
Research Article
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Liu, H., Strobridge, F.C., Borkiewicz, O.J., Wiaderek, K.M., Chapman, K.W., Chupas, P.J., Grey, C.P., Science 344 (6191) (2014), doi: 10.1126/science.1252817.CrossRefGoogle Scholar
Zhang, X., van Hulzen, M., Singh, D.P., Brownrigg, A., Wright, J.P., van Dijk, N.H., Wagemaker, M., Nano Lett. 14 (5), 2279 (2014).CrossRefGoogle Scholar
Egami, T., Billinge, S.J.L., Underneath the Bragg Peaks Structural Analysis of Complex Materials (Pergamon, Oxford, 2012).Google Scholar
Chupas, P.J., Qiu, X., Hanson, J.C., Lee, P.L., Grey, C.P., Billinge, S.J.L., J. Appl. Crystallogr. 36, 1342 (2003).CrossRefGoogle Scholar
Chapman, K.W., Chupas, P.J., in In-Situ Characterization of Heterogeneous Catalysts, Rodriguez, J.A., Hanson, J.C., Chupas, P.J., Eds. (Wiley, Hoboken, NJ, 2013), pp. 147168.CrossRefGoogle Scholar
Bréger, J., Dupré, N., Chupas, P.J., Lee, P.L., Proffen, T., Parise, J.B., Grey, C.P., J. Am. Chem. Soc. 127 (20) 7529 (2005).CrossRefGoogle Scholar
Ulvestad, A., Singer, A., Cho, H.-M., Clark, J.N., Harder, R., Maser, J., Meng, Y.S., Shpyrko, O.G., Nano Lett. 14 (9), 5123 (2014).CrossRefGoogle Scholar
Strobridge, F.C., Orvananos, B., Croft, M., Yu, H.-C., Robert, R., Liu, H., Zhong, Z., Connolley, T., Drakopoulos, M., Thornton, K., Grey, C.P., Chem. Mater. 27 (7), 2374 (2015).CrossRefGoogle Scholar
Wiaderek, K.M., Borkiewicz, O.J., Castillo-Martinez, E., Robert, R., Pereira, N., Amatucci, G.G., Grey, C.P., Chupas, P.J., Chapman, K.W., J. Am. Chem. Soc. 135 (10), 4070 (2013).CrossRefGoogle Scholar
Strobridge, F.C., Clement, R.J., Leskes, M., Middlemiss, D.S., Borkiewicz, O.J., Wiaderek, K.M., Chapman, K.W., Chupas, P.J., Grey, C.P., Chem. Mater. 26 (21), 6193 (2014).CrossRefGoogle Scholar
Wiaderek, K.M., Borkiewicz, O.J., Pereira, N., Ilavsky, J., Amatucci, G.G., Chupas, P.J., Chapman, K.W., J. Am. Chem. Soc. 136 (17), 6211 (2014).CrossRefGoogle Scholar
Ashton, T.E., Borras, D.H., Iadecola, A., Wiaderek, K.M., Chupas, P.J., Chapman, K.W., Corr, S.A., Acta Crystallogr. B Struct. Cryst. Eng. Mater. 71 (6), 722 (2015).CrossRefGoogle Scholar
Hu, Y.Y., Liu, Z.G., Nam, K.W., Borkiewicz, O.J., Cheng, J., Hua, X., Dunstan, M.T., Yu, X.Q., Wiaderek, K.M., Du, L.S., Chapman, K.W., Chupas, P.J., Yang, X.Q., Grey, C.P., Nat. Mater. 12 (12), 1130 (2013).CrossRefGoogle Scholar
Hua, X., Robert, R., Du, L.S., Wiaderek, K.M., Leskes, M., Chapman, K.W., Chupas, P.J., Grey, C.P., J. Phys. Chem. C 118 (28), 15169 (2014).CrossRefGoogle Scholar
Joliffe, I.T., Principal Component Analysis (Springer-Verlag, New York, 2002).Google Scholar
Tarasov, L.P., Warren, B.E., J. Chem. Phys. 4, 236 (1936).CrossRefGoogle Scholar
Kittel, C., Introduction to Solid State Physics (Wiley, 2004).Google Scholar
Franklin, R.E., Acta Crystallogr. 3 (2), 107 (1950).CrossRefGoogle Scholar
Shannon, R.D., Gardner, K.H., Staley, R.H., Bergeret, G., Gallezot, P., Auroux, A., J. Phys. Chem. 89 (22), 4778 (1985).CrossRefGoogle Scholar
Borkiewicz, O.J., Wiaderek, K.M., Chupas, P.J., Chapman, K.W., J. Phys. Chem. Lett. 6 (11), 2081 (2015).CrossRefGoogle Scholar
Borkiewicz, O.J., Shyam, B., Wiaderek, K.M., Kurtz, C., Chupas, P.J., Chapman, K.W., J. Appl. Crystallogr. 45 (6), 1261 (2012).CrossRefGoogle Scholar
Chapman, K.W., Lapidus, S.H., Chupas, P.J., J. Appl. Crystallogr. 48 (6), 1619 (2015), http://dx.doi.org/10.1107/S1600576715016532.CrossRefGoogle Scholar
Lapidus, S.H., Rajput, N.N., Qu, X., Chapman, K.W., Persson, K.A., Chupas, P.J., Phys. Chem. Chem. Phys. 16 (40), 21941 (2014).CrossRefGoogle Scholar