Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-08T01:23:17.819Z Has data issue: false hasContentIssue false

Electrorheology

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

The influence of electric fields on the deformation and flow properties of materials has been a subject of interest for many years. Recently, there has been renewed interest in a particular branch of these electric field effects—the electrorheological (ER) effect. The ER effect is also known as the Winslow effect after its founder Willis Winslow. Winslow observed that applying strong electric fields to nonaqueous silica suspensions activated with a small amount of water caused rapid solidification of the originally fluid material. This type of behavior was seen as instrumental in the development of high-speed valves, reactive damping systems, and a host of other applications.

Type
Materials Rheology
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Winslow, W.M., J. Appl. Phys. 20 (1949) p. 1137.CrossRefGoogle Scholar
2.Block, H. and Kelly, J.P., J. Phys. D 21 (12) (1988) p. 1661.Google Scholar
3.Shulman, Z.P., Gorodkin, R.G., Korobko, E.V., and Gleb, V.K., J. Non-Newt. Fluid Mech. 8 (1-2) (1981) p. 29.CrossRefGoogle Scholar
4.Gorodkin, R.G., Korobko, Ye.V., Blokh, G.M., Gleb, V.K., Sidorova, G.I., and Ragother, M.M., Fluid Mech. Sov. 8 (4) (1979) p. 48.Google Scholar
5.Scott, D., Yamaguchi, J., Automotive Engineering 93 (11) (1985) p. 75.Google Scholar
6.Duclos, T.G., Acker, D.N., and Carlson, J.D., Machine Design (Jan. 21, 1988) p.42.Google Scholar
7.Marshall, L., Goodwin, J.W., and Zukoski, C.F., J. Chem. Soc. Farad. Trans. I 85 (1985) p. 2785.CrossRefGoogle Scholar
8.Jordan, T.C. and Shaw, M.T., Proc. 2nd Int. Conf. on ER Fluids, edited by Carlson, J.D., Sprecher, A.F., and Conrad, H., 1990 p. 231251.Google Scholar
9.Stevens, N.G., Sproston, J.L., and Stanway, R., Trans Am. Soc. Mech. Eng. 54 (1987) p. 456.Google Scholar
10.Yoshimura, A.S. and Prud'homme, R.K., J. Rheol. 32 1988 p. 53.CrossRefGoogle Scholar
11.Deinega, Yu.F. and Vinogradov, G.V., Rheol. Acta 23 (1984) p. 636.CrossRefGoogle Scholar
12.Klass, D.L. and Martinek, T.W., J. Appl. Phys. 38 (1) (1967) p. 67.CrossRefGoogle Scholar
13.Gast, A.P. and Zukoski, C.F., Adv. Coll. Int. Sci. 30 (1989) p. 153.CrossRefGoogle Scholar
14.Sprecher, A.F., Carlson, J.D., and Conrad, H., Mater. Sci. Eng. 95 (1987) p. 187.CrossRefGoogle Scholar
15.Brooks, D., Goodwin, J., Hjelm, C., Marshall, L., Zukoski, C., Colloids and Surfaces 18 (1986) p. 293.CrossRefGoogle Scholar
16.Adriani, P.M. and Gast, A.P., Phys. Fluids 31 (10) (1988) p. 2757.CrossRefGoogle Scholar
17.Jordan, T.C., PhD thesis, University of Connecticut, 1989.Google Scholar
18.Filisko, F.E. and Radzilowski, L.H., J. Rheol. 34 (4) (1990) p. 539.CrossRefGoogle Scholar
19.Stangroom, J.E., Phys. Technol. 14 (1983) p. 290.CrossRefGoogle Scholar
20.Stangroom, J.E., Brit. Patent No. 1 570 234 (1980); Chem. Abs. 94 (1980) 8048279; see also Chem. Abs. 98 (1982) 26218670.Google Scholar
21.Dietz, P.W. and Melcher, J.R., AIChE Symp Series: Air Pollutants and Particulate Systems 175 (74) (1978) p. 166.Google Scholar
22.Klass, D.L. and Martinek, T.W., J. Appl. Phys. 38 (1) (1967) p. 75.CrossRefGoogle Scholar
23.Trapeznikov, A.A., Petrzhik, G.G., and Chertkova, O.A., Kolloid. Zh. 43 (1981) p. 1134.Google Scholar
24.Hartel, V., U.S. Patent No. 4,765,600, (1988).Google Scholar
25.Lykov, A.V., Shul'man, Z.P., Gorodkin, R.G., Matsepuro, A.D., J. Eng. Phys. 18 (1970) p. 979.Google Scholar
26.Winslow, W.M., U.S. Patent No. 2,417,850 (1947).Google Scholar
27.Takeo, K. and Omura, Y., U.S. Patent No. 3,984,339 (1976).Google Scholar
28.Block, H. and Kelly, J.P., U.S. Patent No. 4,687,589 (1987).Google Scholar
29.Filisko, F., U.S. Patent No. 4,744,914 (1988).Google Scholar
30.Dukhin, S.S. and Shilov, V.N., Dielectric Pheonomena and the Double Layer in Disperse Systems and Polyelectrolytes (John Wiley & Sons, New York, 1974) chap. 8.Google Scholar
31.Makatun, V.N., Lapko, K.N., Matsepuro, A.D., and Tikavyi, V.F., V.F., , J. Eng. Phys. 45 (4) (1983) p. 1138.CrossRefGoogle Scholar
32.Us'yarov, O.G., Lavrov, I.S., and Efremov, I.F., Kolloid. Zh. 28 (4) (1966) p. 596.Google Scholar
33.Alonso, M., Finn, E.J., Fundamental University Physics Vol. 2: Fields and Waves (Addison-Wesley Publishing Co., Reading,) p. 477.Google Scholar
34.Pohl, H.A., Dielectrophoresis: The Behavior of Neutral Matter in Non-uniform Electric Fields (Cambridge University Press, Cambridge, 1978).Google Scholar
35.Priestley, J., The History and Present State of Electricity with Original Experiments by Joseph Priestley, Vol. 1, 3rd ed. (1755) in Sources of Science (18) (Johnson Reprint Corp., New York, 1966).Google Scholar
36.Hayter, J.B. and Pynn, R., Phys. Rev. Lett. 49 (1983) p. 1103.CrossRefGoogle Scholar
37.Klingenberg, D.J. and Zukoski, C.F., Langmuir 6 (1990) p. 15.CrossRefGoogle Scholar
38.de Gennes, P.G. and Pincus, P.A., Phys. Kondens. Materie. 11 (1970) p. 189.Google Scholar
39.Arp, P.A. and Mason, S.G., Coll. Polym. Sci. 255 (1967) p. 1165.CrossRefGoogle Scholar
40.Shliomis, M.I., Sov. Phys. JETP 39 (4) (1972) p. 1291.Google Scholar