Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-28T01:09:26.020Z Has data issue: false hasContentIssue false

Electromechanics on the Nanometer Scale: Emerging Phenomena, Devices, and Applications

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

Coupling between mechanical and electrical phenomena is ubiquitous at the nano-and molecular scales, with examples ranging from piezoelectricity and flexoelectricity in perovskites to complex molecular transformations in redox active molecules and ion channels. This article delineates the field of nanoelectromechanics enabled by recent advances in scanning probe, indentation, and interferometric techniques and provides a unified outlook at a number of related topics, including membrane and surface flexoelectricity, local piezoelectricity in ferroelectrics and associated devices, and electromechanical molecular machines. It also summarizes experimental and theoretical challenges on the pathway to visualize, control, and manipulate electromechanical activity on the nanoscale and molecular levels.

Type
Articles
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Kalinin, S.V., Rodriguez, B.J., Jesse, S., Mirman, B., Karapetian, E., Eliseev, E.A., Morozovska, A.N., Annu. Rev. Mat. Sci. 37, 189 (2007).CrossRefGoogle Scholar
2Priya, S., Daniel, D.J., Eds., Energy Harvesting Technologies (Springer, New York, 2009).CrossRefGoogle Scholar
3Andrews, D.L., Ed., Energy Harvesting Materials (World Scientific, New Jersey, 2005).Google Scholar
4Meyer, E., Hug, H.-J., Bennewitz, R., Eds., Scanning Probe Microscopy: The Lab on a Tip (Springer, New York, 2005).Google Scholar
5Tagantsev, A.K., Phase Transitions 35, 119 (1981).Google Scholar
6Gruverman, A., Kholkin, A.L., Rep. Progr. Phys. 69, 2443 (2006).CrossRefGoogle Scholar
7Zhang, P.-C., Keleshian, A.M., Sachs, F., Nature (London) 413, 428 (2001).Google Scholar
8Zhang, Q.M., Pan, W.Y., Cross, L.E., J. Appl. Phys. 63, 2492 (1988);CrossRefGoogle Scholar
Zhang, Q.M., Pan, W.Y., Cross, L.E., J. Appl. Phys. 65, 2807 (1989).CrossRefGoogle Scholar
9Morozovska, A.N., Bravina, S.L., Eliseev, E.A., Kalinin, S.V., Phys. Rev. B 75, 174109 (2007).CrossRefGoogle Scholar
10Terabe, K., Nakamura, M., Takekawa, S., Kitamura, K., Higuchi, S., Gotoh, Y., Cho, Y., Appl. Phys. Lett. 82, 433 (2002).Google Scholar
11Rodriguez, B.J., Kalinin, S.V., Jesse, S., Chu, Y.H., Zhao, T., Ramesh, R., Eliseev, E.A., Morozovska, A.N., Proc. Nat. Acad. Sci. 104, 20204 (2007).CrossRefGoogle Scholar
12Jesse, S., Rodriguez, B.J., Baddorf, A.P., Vrejoiu, I., Hesse, D., Alexe, M., Eliseev, E.A., Morozovska, A.N., Kalinin, S.V., Nat. Mater. 7, 209 (2008).CrossRefGoogle Scholar
13Rodriguez, B.J., Gruverman, A., Kingon, A.I., Nemanich, R.J., Appl. Phys. Lett. 80, 4166 (2002).CrossRefGoogle Scholar
14Kalinin, S.V., Rodriguez, B.J., Jesse, S., Thundat, T., Gruverman, A., Appl. Phys. Lett. 87, 053901 (2005).Google Scholar
15Fischer-Cripps, A.C., Nanoindentation (Springer, New York, 2002).CrossRefGoogle Scholar
16Rief, M., Gautel, M., Oesterhelt, F., Fernandez, J.M., Gaub, H.E., Science 276, 1109 (1997).Google Scholar
17Stipe, B.C., Rezaei, M.A., Ho, W., Science 279, 1907 (1998).CrossRefGoogle Scholar
18Rar, A., Pharr, G.M., Oliver, W.C., Karapetyan, E., Kalinin, S.V., J. Mater. Res. 21, 552 (2006).Google Scholar
19Oliver, W.C., Pharr, G.M., J. Mater. Res. 19, 3 (2004).CrossRefGoogle Scholar
20Li, J.-F., Moses, P., Viehland, D., Rev. Sci. Instrum. 66, 215 (1995).CrossRefGoogle Scholar
21Kholkin, A.L., Wütchrich, Ch., Taylor, D.V., Setter, N., Rev. Sci. Instrum. 67, 1935 (1996).CrossRefGoogle Scholar
22Kholkin, A.L., Colla, E.L., Tagantsev, A.K., Taylor, D.V., Setter, N., Appl. Phys. Lett. 68, 2577 (1996).CrossRefGoogle Scholar
23Kholkin, A.L., Brooks, K.G., Setter, N., Appl. Phys. Lett. 71, 2044 (1997).CrossRefGoogle Scholar
24Muralt, P., Kholkin, A., Kohli, M., Maeder, T., Sens. Actuators, A 53, 398 (1996).CrossRefGoogle Scholar
25Kholkin, A.L., Ferroelectrics 221, 219 (1999);Google Scholar
Kholkin, A.L., Ferroelectrics 238, 235 (2000).Google Scholar
26Graebner, J.E., Barber, B.P., Gammel, P.L., Greywall, D.S., Appl. Phys. Lett. 78, 159 (2001).Google Scholar
27Vyshatko, N., Brioso, P., Vilarinho, P., Kholkin, A.L., Rev. Sci. Instrum. 76, 085101 (2005).CrossRefGoogle Scholar
28Kalinin, S.V., Rodriguez, B.J., Jesse, S., Shin, J., Baddorf, A.P., Gupta, P., Jain, H., Williams, D.B., Gruverman, A., Microscopy and Microanalysis 12, 1 (2006).CrossRefGoogle Scholar
29Rodriguez, B.J., Nemanich, R.J., Kingon, A., Gruverman, A., Kalinin, S.V., Terabe, K., Liu, X.Y., Kitamura, K., Appl. Phys. Lett. 86, 012906 (2005).CrossRefGoogle Scholar
30Kalinin, S.V., Rodriguez, B.J., Jesse, S., Maksymovych, P., Seal, K., Nikiforov, M., Baddorf, A.P., Kholkin, A.L., Proksch, R., Materials Today 11, 16 (2008).CrossRefGoogle Scholar
31Kalinin, S.V., Rodriguez, B.J., Shin, J., Jesse, S., Grichko, V., Thundat, T., Baddorf, A.P., Gruverman, A., Ultramicroscopy 106, 334 (2006).CrossRefGoogle Scholar