Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-25T01:21:58.270Z Has data issue: false hasContentIssue false

Electrolyte gated single-crystal organic transistors to examine transport in the high carrier density regime

Published online by Cambridge University Press:  14 January 2013

Wei Xie
Affiliation:
Department of Chemical Engineering and Materials Science, University of Minnesota; [email protected]
C. Daniel Frisbie
Affiliation:
Department of Chemical Engineering and Materials Science, University of Minnesota; [email protected]
Get access

Abstract

Recent advances in understanding electronic charge transport in organic semiconductors are motivated by the fast growth of organic electronics. In particular, organic single crystals provide an ideal test bed for systematic studies of charge transport, with rapid progress in single-crystal-based field-effect transistors in the past few years. Charge densities induced in crystals by the field-effect have been in the low limit regime (1010 cm–2 to 1013 cm–2) mainly due to the difficulties of boosting gate dielectric capacitance. Consequently, the transport physics of organic crystals in the high-charge-density regime has not been systematically explored. With the emergence of the electrolyte gating technique, ultrahigh charge densities (1013 cm–2 to 1015 cm–2) can be achieved. In this article, we first discuss the general methodologies of applying electrolyte gating to organic crystals. We then review several recent research highlights, including the maximization of charge density and improvement of carrier mobility, enhanced understanding of the mobility-charge density relationship, and observations of ambipolar transport and a novel conductivity peak that occurs only at high charge densities. These recent achievements are extremely important for ongoing efforts to realize novel transport behavior in organic crystals, such as superconductivity and the insulator-to-metal transition.

Type
Research Article
Copyright
Copyright © Materials Research Society 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahn, C.H., Di Ventra, M., Eckstein, J.N., Frisbie, C.D., Gershenson, M.E., Goldman, A.M., Inoue, I.H., Mannhart, J., Millis, A.J., Morpurgo, A.F., Natelson, D., Triscone, J.-M., Rev. Mod. Phys. 78, 1185 (2006).CrossRefGoogle Scholar
Ahn, C.H., Triscone, J.M., Mannhart, J., Nature 424, 1015 (2003).CrossRefGoogle Scholar
Haddon, R.C., Acc. Chem. Res. 25, 127 (1992).CrossRefGoogle Scholar
Halik, M., Klauk, H., Zschieschang, U., Schmid, G., Dehm, C., Schütz, M., Maisch, S., Effenberger, F., Brunnbauer, M., Stellacci, F., Nature 431, 963 (2004).CrossRefGoogle Scholar
Hur, S.-H., Yoon, M.-H., Gaur, A., Shim, M., Facchetti, A., Marks, T.J., Rogers, J.A., J. Am. Chem. Soc. 127, 13808 (2005).CrossRefGoogle Scholar
Yoon, M.-H., Facchetti, A., Marks, T.J., Proc. Natl. Acad. Sci. U.S.A. 102, 4678 (2005).CrossRefGoogle Scholar
Kim, C., Wang, Z., Choi, H.-J., Ha, Y.-G., Facchetti, A., Marks, T.J., J. Am. Chem. Soc. 130, 6867 (2008).CrossRefGoogle Scholar
Ahn, C.H., Gariglio, S., Paruch, P., Tybell, T., Antognazza, L., Triscone, J.M., Science 284, 1152 (1999).CrossRefGoogle Scholar
Ueno, K., Nakamura, S., Shimotani, H., Ohtomo, A., Kimura, N., Nojima, T., Aoki, H., Iwasa, Y., Kawasaki, M., Nat. Mater. 7, 855 (2008).CrossRefGoogle Scholar
Kim, S.-H., Hong, K., Lee, K.-H., Xie, W., Zhang, S., Lodge, T.P., Frisbie, C.D., Adv. Mater. (2012), doi: 10.1002/adma.201202790.Google Scholar
Panzer, M.J., Frisbie, C.D., J. Am. Chem. Soc. 129, 6599 (2007).CrossRefGoogle Scholar
Herlogsson, L., Noh, Y.Y., Zhao, N., Crispin, X., Sirringhaus, H., Berggren, M., Adv. Mater. 20, 4708 (2008).CrossRefGoogle Scholar
Ye, J., Craciun, M.F., Koshino, M., Russo, S., Inoue, S., Yuan, H., Shimotani, H., Morpurgo, A.F., Iwasa, Y., Proc. Natl. Acad. Sci. U.S.A. 108, 13002 (2011).CrossRefGoogle Scholar
Xia, Y., Cho, J.H., Lee, J., Ruden, P.P., Frisbie, C.D., Adv. Mater. 21, 2174 (2009).CrossRefGoogle Scholar
Cho, J.H., Lee, J., Xia, Y., Kim, B.S., He, Y., Renn, M.J., Lodge, T.P., Frisbie, C.D., Nat. Mater. 7, 900 (2008).CrossRefGoogle Scholar
Lodge, T.P., Science 321, 50 (2008).CrossRefGoogle ScholarPubMed
Xie, W., Frisbie, C.D., J. Phys. Chem. C 115, 14360 (2011).CrossRefGoogle Scholar
Podzorov, V., Menard, E., Rogers, J., Gershenson, M., Phys. Rev. Lett. 95, 226601 (2005).CrossRefGoogle Scholar
Minder, N.A., Ono, S., Chen, Z., Facchetti, A., Morpurgo, A.F., Adv. Mater. 24, 503 (2012).CrossRefGoogle Scholar
Panzer, M.J., Frisbie, C.D., Appl. Phys. Lett. 88, 203504 (2006).CrossRefGoogle Scholar
Ono, S., Seki, S., Hirahara, R., Tominari, Y., Takeya, J., Appl. Phys. Lett. 92, 103313 (2008).CrossRefGoogle Scholar
Menard, E., Podzorov, V., Hur, S.H., Gaur, A., Gershenson, M.E., Rogers, J.A., Adv. Mater. 16, 2097 (2004).CrossRefGoogle Scholar
Yomogida, Y., Pu, J., Shimotani, H., Ono, S., Hotta, S., Iwasa, Y., Takenobu, T., Adv. Mater. 24, 4392 (2012).CrossRefGoogle Scholar
Sundar, V.C., Zaumseil, J., Podzorov, V., Menard, E., Willett, R.L., Someya, T., Gershenson, M.E., Rogers, J.A., Science 303, 1644 (2004).CrossRefGoogle Scholar
Shimotani, H., Asanuma, H., Takeya, J., Iwasa, Y., Appl. Phys. Lett. 89, 203501 (2006).CrossRefGoogle Scholar
Uemura, T., Yamagishi, M., Ono, S., Takeya, J., Appl. Phys. Lett. 95, 103301 (2009).CrossRefGoogle Scholar
Ono, S., Minder, N., Chen, Z., Facchetti, A., Morpurgo, A.F., Appl. Phys. Lett. 97, 143307 (2010).CrossRefGoogle Scholar
Molinari, A.S., Alves, H., Chen, Z., Facchetti, A., Morpurgo, A.F., J. Am. Chem. Soc. 131, 2462 (2009).CrossRefGoogle Scholar
Ono, S., Miwa, K., Seki, S., Takeya, J., Appl. Phys. Lett. 94, 063301 (2009).CrossRefGoogle Scholar
Hulea, I.N., Fratini, S., Xie, H., Mulder, C.L., Iossad, N.N., Rastelli, G., Ciuchi, S., Morpurgo, A.F., Nat. Mater. 5, 982 (2006).CrossRefGoogle Scholar
Zhang, S., Lu, X., Zhou, Q., Li, X., Ionic liquids: Physicochemical properties (Elsevier Science Limited, Amsterdam, 2009).Google ScholarPubMed
Cohen, M.J., Coleman, L.B., Garito, A.F., Heeger, A.J., Phys. Rev. B 10, 1298 (1974).CrossRefGoogle Scholar
Chiang, C.K., Fincher, C.R. Jr., Park, Y.W., Heeger, A.J., Shirakawa, H., Louis, E.J., Gau, S.C., MacDiarmid, A.G., Phys. Rev. Lett. 39, 1098 (1977).CrossRefGoogle Scholar
Xia, Y., Xie, W., Ruden, P.P., Frisbie, C.D., Phys. Rev. Lett. 105, 036802 (2010).CrossRefGoogle Scholar
Ofer, D., Crooks, R.M., Wrighton, M.S., J. Am. Chem. Soc. 112, 7869 (1990).CrossRefGoogle Scholar
Panzer, M.J., Frisbie, C.D., J. Am. Chem. Soc. 127, 6960 (2005).CrossRefGoogle Scholar
Paulsen, B.D., Frisbie, C.D., J. Phys. Chem. C 116, 3132 (2012).CrossRefGoogle Scholar
Yuan, H., Shimotani, H., Tsukazaki, A., Ohtomo, A., Kawasaki, M., Iwasa, Y., Adv. Funct. Mater. 19, 1046 (2009).CrossRefGoogle Scholar