Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-30T23:00:50.306Z Has data issue: false hasContentIssue false

Electrodeposition of nanowires for the detection of hydrogen gas

Published online by Cambridge University Press:  31 January 2011

Reginald M. Penner*
Affiliation:
University of California, Irvine, CA 92697, USA, [email protected]
Get access

Abstract

Nanowires composed of noble metals are attractive candidates for chemical sensors because they are both ductile and chemically stable in air. The single application where electrodeposited metal nanowires have had the largest impact is that of hydrogen gas (H2) sensing. The development of sensitive, selective, power-efficient, rapid-responding, and inexpensive H2 sensors, for the purpose of detecting leaked H2 in proximity to devices such as fuel cells, is an active area of research. In this application, a change in the dc electrical resistance of the nanowire from its background value signals the presence of H2 and provides an estimate of its concentration. Two types of nanowires have been studied for use as hydrogen sensors: Electrodeposited nanowires composed of pure palladium metal (Pd) reversibly absorb hydrogen to form a hydride according to Pd + xH2 → PdH2x. Alternatively, nanowires that transduce the presence of H2 may be prepared by decorating an inert, electrically conductive support such as a carbon nanotube or a nickel nanowire with one or more eletrodeposited palladium nanoparticles. These palladium nanoparticles impart selectivity to H2 and cause the electrical conductivity of the composite particle/support to be modulated in the presence of H2. Here we summarize recent contributions of electrodeposition to the development of nanowire-based sensors for H2.

Type
Technical Feature
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Cui, Y., Wei, Q.Q., Park, H.K., Lieber, C.M., Science 293, 1289 (2001).CrossRefGoogle Scholar
2. Reinhoudt, D.N., Sens. Actuators, B 24, 197 (1995).CrossRefGoogle Scholar
3. Reinhoudt, D.N., Engbersen, J.F.J., Brzozka, Z., Vandenvlekkert, H.H., Honig, G.W.N., Holterman, H.A.J., Verkerk, U.H., Anal. Chem. 66, 3618 (1994).CrossRefGoogle Scholar
4. Patolsky, F., Zheng, G.F., Lieber, C.M., Nat. Protoc. 1, 1711 (2006).CrossRefGoogle Scholar
5. Wang, W.U., Chen, C., Lin, K.H., Fang, Y., Lieber, C.M., Proc. Natl. Acad. Sci. U.S.A. 102, 3208 (2005).Google Scholar
6. Patolsky, F., Zheng, G.F., Hayden, O., Lakadamyali, M., Zhuang, X.W., Lieber, C.M., Proc. Natl. Acad. Sci. U.S.A. 101, 14017 (2004).Google Scholar
7. Comini, E., Faglia, G., Sberveglieri, G., Pan, Z.W., Wang, Z.L., Appl. Phys. Lett. 81, 1869 (2002).CrossRefGoogle Scholar
8. Hernandez-Ramirez, F., Prades, J.D., Tarancon, A., Barth, S., Casals, O., Jimenez-Diaz, R., Pellicer, E., Rodriguez, J., Juli, M.A., Romano-Rodriguez, A., Morante, J.R., Mathur, S., Helwig, A., Spannhake, J., Mueller, G., Nanotechnol. 18 (2007).Google Scholar
9. Hernandez-Ramirez, F., Tarancon, A., Casals, O., Arbiol, J., Romano-Rodriguez, A., Morante, J.R., Sens. Actuators, B 121, 3 (2007).CrossRefGoogle Scholar
10. Hoa, N.D., Quy, N.V., Kim, D., Sens. Actuators, B 142, 253 (2009).CrossRefGoogle Scholar
11. Huang, H., Lee, Y.C., Tan, O.K., Zhou, W., Peng, N., Zhang, Q., Nanotechnol. 20 (2009).Google Scholar
12. Kolmakov, A., Zhang, Y.X., Cheng, G.S., Moskovits, M., Adv. Mater. 15, 997 (2003).CrossRefGoogle Scholar
13. Kolmakov, A., Zhang, Y.X., Moskovits, M., Nano Lett. 3, 1125 (2003).CrossRefGoogle Scholar
14. Shen, Y., Yamazaki, T., Liu, Z.F., Meng, D., Kikuta, T., J. Alloys Compd. 488, L21 (2009).CrossRefGoogle Scholar
15. Shen, Y.B., Yamazaki, T., Liu, Z.F., Meng, D., Kikuta, T., Nakatani, N., Saito, M., Mori, M., Sens. Actuators, B 135, 524 (2009).CrossRefGoogle Scholar
16. Sysoev, V.V., Goschnick, J., Schneider, T., Strelcov, E., Kolmakov, A., Nano Lett. 7, 3182 (2007).Google Scholar
17. Sysoev, V.V., Schneider, T., Goschnick, J., Kiselev, I., Habicht, W., Hahn, H., Strelcov, E., Kolmakov, A., Sens. Actuators, B 139, 699 (2009).Google Scholar
18. Tien, L.C., Norton, D.P., Gila, B.P., Pearton, S.J., Wang, H.T., Kang, B.S., Ren, F., Appl. Surf. Sci. 253, 4748 (2007).Google Scholar
19. Wan, Q., Huang, J., Xie, Z., Wang, T.H., Dattoli, E.N., Lu, W., Appl. Phys. Lett. 92 (2008).Google Scholar
20. Lewis, L.A., The Palladium Hydrogen System (Academic Press, London, 1967).CrossRefGoogle Scholar
21. Hughes, R.C., Schubert, W.K., J. Appl. Phys. 71, 542 (1992).CrossRefGoogle Scholar
22. The Department of Energy, Vol. Funding Opportunity Announcement: DE-PS36–09G099004 (The Department of Energy: Golden, CO, 2009).Google Scholar
23. Bangar, M.A., Ramanathan, K., Yun, M., Lee, C., Hangarter, C., Myung, N.V., Chem. Mater. 16, 4955 (2004).CrossRefGoogle Scholar
24. Im, Y., Lee, C., Vasquez, R.P., Bangar, M.A., Myung, N.V., Menke, E.J., Penner, R.M., Yun, M.H., Small 2, 356 (2006).CrossRefGoogle Scholar
25. Yun, M.H., Myung, N.V., Vasquez, R.P., Lee, C.S., Menke, E., Penner, R.M., Nano Lett. 4, 419 (2004).CrossRefGoogle Scholar
26. Hu, Y.S., Perello, D., Mushtaq, U., Yun, M.H., IEEE Trans. Nanotechnol. 7, 693 (2008).Google Scholar
27. Hu, Y., To, A.C., Yun, M., Nanotechnology 20 (2009).Google ScholarPubMed
28. Kong, J., Chapline, M.G., Dai, H.J., Adv. Mater. 13, 1384 (2001).3.0.CO;2-8>CrossRefGoogle Scholar
29. Kauffman, D.R., Sorescu, D.C., Schofield, D.P., Allen, B.L., Jordan, K.D., A. Star Nano Lett. 10, 958 (2010).CrossRefGoogle Scholar
30. Allen, B.L., Kichambare, P.D., Star, A., ACS Nano 2, 1914 (2008)CrossRefGoogle Scholar
31. Kauffman, D.R., Star, A., Angew. Chem. Int. Ed. 47, 6550 (2008).CrossRefGoogle Scholar
32. Sun, Y.G., Wang, H.H., Adv. Mater. 19, 2818 (2007).CrossRefGoogle Scholar
33. Sun, Y.G., Wang, H.H., Appl. Phys. Lett. 90 (2007).Google Scholar
34. Mubeen, S., Yoo, B., Myung, N.V., Appl. Phys. Lett. 93, (2008).Google Scholar
35. Zhang, T., Mubeen, S., Myung, N.V., Deshusses, M.A., Nanotechnol. 19 (2008)Google Scholar
36. Mubeen, S., Zhang, T., Yoo, B., Deshusses, M.A., Myung, N.V., J. Phys. Chem. C 111, 6321 (2007).CrossRefGoogle Scholar
37. Khalap, V.R., Sheps, T., Kane, A.A., Collins, P.G., Nano Lett. 10, 896 (2010).CrossRefGoogle Scholar
38. Kanai, Y., Khalap, V.R., Collins, P.G., Grossman, J.C., Phys. Rev. Lett. 104 (2010).Google Scholar
39. Goldsmith, B.R., Coroneus, J.G., Kane, A.A., Weiss, G.A., Collins, P.G., Nano Lett. 8, 189 (2008).CrossRefGoogle Scholar
40. Dasari, R., Zamborini, F.P., J. Am. Chem. Soc. 130, 16138 (2008).CrossRefGoogle Scholar
41. Favier, F., Walter, E.C., Zach, M.P., Benter, T., Penner, R.M., Science 293, 2227 (2001).CrossRefGoogle Scholar
42. Walter, E.C., Favier, F., Penner, R.M., Anal. Chem. 74, 1546 (2002).CrossRefGoogle Scholar
43. Walter, E.C., Murray, B.J., Favier, F., Kaltenpoth, G., Grunze, M., Penner, R.M. J. Phys. Chem. B 106, 11407 (2002).CrossRefGoogle Scholar
44. Walter, E.C., Zach, M.P., Favier, F., Murray, B.J., Inazu, K., Hemminger, J.C., Penner, R.M., ChemPhysChem 4, 131 (2003).CrossRefGoogle Scholar
45. Menke, E.J., Thompson, M.A., Xiang, C., Yang, L.C., Penner, R.M., Nat. Mater 5, 914 (2006).CrossRefGoogle Scholar
46. Xiang, C.X., Kung, S.C., Taggart, D.K., Yang, F., Thompson, M.A., Guell, A.G., Yang, Y.A., Penner, R.M., ACS Nano 2, 1939 (2008).CrossRefGoogle Scholar
47. Xiang, C.X., Yang, Y.G., Penner, R.M., Chem. Commun. 859 (2009).CrossRefGoogle Scholar
48. Yang, Y., Kung, S.C., Taggart, D.K., Xiang, C., Yang, F., Brown, M.A., Guell, A.G. Kruse, T.J., Hemminger, J.C., Penner, R.M., Nano Lett. 8, 2447 (2008).CrossRefGoogle Scholar
49. Yang, Y., Taggart, D., Brown, M.A., Yang, F., Hemminger, J.C., Penner, R.M., ACS Nano 3, 4144 (2010).CrossRefGoogle Scholar
50. Walter, E.C., Ng, K., Zach, M.P., Penner, R.M., Favier, F., Microelectron. Eng 612, 555 (2002).CrossRefGoogle Scholar
51. Walter, E.C., Penner, R.M., Liu, H., Ng, K.H., Zach, M.P., Favier, F., Surf. Interface Anal. 34, 409 (2002).CrossRefGoogle Scholar
52. Yang, F., Taggart, D.K., Penner, R.M., Nano Lett. 9, 2177 (2009).CrossRefGoogle Scholar
53. Dimeo, F., Chen, I.S., Chen, P., Neuner, J., Roerhl, A., Welch, J., Sens. Actuators, B 117, 10 (2006).CrossRefGoogle Scholar
54. Khalap, V.R., Sheps, T., Kane, A.A., Collins, P.G., Nano Lett. 10, 896 (2010)CrossRefGoogle Scholar
55. Menke, E., Thompson, M.A., Xiang, C., Yang, L.C., Penner, R.M., Nat. Mater. 5 914 (2006).CrossRefGoogle Scholar