Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-28T00:39:53.910Z Has data issue: false hasContentIssue false

Electrodeposition and chemical bath deposition of functional nanomaterials

Published online by Cambridge University Press:  12 September 2016

Jay A. Switzer
Affiliation:
Missouri University of Science and Technology, Rolla, MO 65409, USA, [email protected]
Gary Hodes
Affiliation:
Weizmann Institute of Science, Rehovot76100, Israel, [email protected]
Get access

Abstract

Electrodeposition (ED) and chemical bath deposition (CBD) are both solution processing methods that assemble solid materials from molecules, ions, or complexes in solution. The reactions occur on solid surfaces to produce polycrystalline and epitaxial films, porous networks, nanorods, superlattices, and composites. Both methods can be used to produce metals, semiconductors, magnetic materials, and ceramics in a wide array of architectures. Because of the low processing temperatures (often near room temperature), the techniques are ideal for producing nanostructured materials and interfaces. The methods are not only inexpensive and relatively simple, but they can often produce materials and nanostructures that cannot be accessed in ultrahigh vacuum. For example, the shape and orientation can be tuned by controlling the pH or through solution additives. Also, in ED, the departure from equilibrium can be precisely controlled through the applied potential. This issue attempts to provide understanding of the growth mechanisms—from the molecular to final structure—of interfacial electrochemical and CBD reactions. For example, the influence of solution additives and pH and the effect of external parameters such as the applied potential will be discussed. Practical applications of these films and nanostructures include photovoltaic/photoelectrochemical cells and chemical/magnetic sensors.

Type
Technical Articles
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Paunovic, M., Schlesinger, M., Fundamentals of Electrochemical Deposition (Wiley-lnterscience, New York, 1998).Google Scholar
2. Andricacos, P.C., Interface 7 23 (1998).Google Scholar
3. Josell, D., Wheeler, D., Huber, W., Moffat, T.P., Phys. Rev. Lett. 87, 016102 (2001).CrossRefGoogle Scholar
4. Guo, L., Searson, P.C., Langmuir 24, 10557 (2008).CrossRefGoogle Scholar
5. Hautier, G., D'Haen, J., Maex, K., Vereecken, P.M., Electrochem. Solid-State Lett. 11, K47 (2008).CrossRefGoogle Scholar
6. Grosh, C.D., Schwartz, D.T., Baneyx, F., Cryst. Growth Designs, 9, 4401 (2009).CrossRefGoogle Scholar
7. Kolb, D.M., Simeone, F.C., Electrochim. Acta 50, 2989 (2005).CrossRefGoogle Scholar
8. O'Brian, B., Plaza, M., Zhu, L.Y., Perez, L., Chien, C.L., Searson, P.C., J. Phys. Chem. C 112, 12018 (2008).Google Scholar
9. Fukami, K., Nakanishi, S., Yamasaki, H., Tada, T., Sonoda, K., Kamikawa, N., Tsuji, N., Sakaguchi, H., Nakato, Y., J. Phys. Chem. C 111, 1150 (2007).CrossRefGoogle Scholar
10. Budevski, E., Staikov, G., Lorenz, W.J., Electrochemical Phase Formation and Growth: An Introduction to the Initial Stages of Metal Deposition (VCH, Weinheim, 1996).CrossRefGoogle Scholar
11. Prod'homme, P., Maroun, F., Cortes, R., Allongue, P., Appl. Phys. Lett. 93, 171901 (2008).CrossRefGoogle Scholar
12. Allongue, P., Maroun, F., Curr. Opin. Mater. Sci. 10, 173 (2007).CrossRefGoogle Scholar
13. Allongue, P., Maroun, F., J. Phys. Condens. Matter 18, S97 (2006).CrossRefGoogle Scholar
14. Kulp, E.A., Kothari, H.M., Limmer, S.J., Yang, J., Gudavarthy, R.V., Bohannan, E.W., Switzer, J.A., Chem. Mater. 21, 5022 (2009).CrossRefGoogle Scholar
15. Switzer, J.A., Gudavarthy, R.V., Kulp, E.A., Mu, G., He, Z., Wessel, A.J., J. Am. Chem. Soc. 132, 1258 (2010).CrossRefGoogle Scholar
16. Golden, T.D., Shumsky, M.G., Zhou, Y., VanderWerf, R.A., Leeuwen, R.A. Van, Switzer, J.A., Chem. Mater. 8, 2499 (1996).CrossRefGoogle Scholar
17. Switzer, J.A., Hung, C.-J., Huang, L.-Y., Switzer, E.R., Kammler, D.R., Golden, T.D., Bohannan, E.W., J. Am. Chem. Soc. 120, 3530 (1998).CrossRefGoogle Scholar
18. Switzer, J.A., Kothari, H.M., Bohannan, E.W., J. Phys. Chem. B 106, 4027 (2002).CrossRefGoogle Scholar
19. Switzer, J.A., Liu, R., Bohannan, E.W., Ernst, F., J. Phys. Chem. B 106, 12369 (2002).CrossRefGoogle Scholar
20. Liu, R., Bohannan, E.W., Switzer, J.A., Oba, F., Ernst, F., Appl. Phys. Lett. 83, 1944 (2003).CrossRefGoogle Scholar
21. Liu, R., Oba, F., Bohannan, E.W., Ernst, F., Switzer, J.A., Chem. Mater. 15, 4882 (2003).CrossRefGoogle Scholar
22. Oba, F., Ernst, F., Yu, Y., Liu, R., Kothari, H.M., Switzer, J.A., J. Am. Ceram. Soc. 88, 253 (2005).CrossRefGoogle Scholar
23. Liu, R., Oba, F., Bohannan, E.W., Ernst, F., Switzer, J.A., Chem. Mater. 17, 725 (2005).CrossRefGoogle Scholar
24. Siegfried, M.J., Choi, K.-S., Angew. Chem. Int. Ed. 44, 3218 (2005).CrossRefGoogle Scholar
25. McShane, C.M., Choi, K.-S., J. Am. Chem. Soc. 131, 2561 (2009).CrossRefGoogle Scholar
26. Allred, D.B., Cheng, A., Sarikaya, M., Baneyx, F., Schwartz, D.T., Nano Lett. 8, 1434 (2008).CrossRefGoogle Scholar
27. Switzer, J.A., Shumsky, M.G., Bohannan, E.W., Science 284 293 (1999).CrossRefGoogle Scholar
28. Limmer, S.J., Kulp, E.A., Bohannan, E.W., Switzer, J.A., Solid State Ionics 178, 749 (2007).Google Scholar
29. Switzer, J.A., Shane, M.J., Phillips, R.J., Science 247 444 (1990).CrossRefGoogle Scholar
30. Switzer, J.A., Raffaelle, R.P., Phillips, R.J., Hung, C.-J., Golden, T.D., Science 258, 1918 (1992).CrossRefGoogle Scholar
31. Switzer, J.A., Hung, C.-J., Breyfogle, B.E., Shumsky, M.G., Leeuwen, R. Van, Golden, T.D., Science 264, 1573 (1994).CrossRefGoogle Scholar
32. Kothari, H.M., Vertegel, A.A., Bohannan, E.W., Switzer, J.A., Chem. Mater. 14, 2750 (2002).CrossRefGoogle Scholar
33. Peulon, S., Lincot, D., Adv. Mater. 8, 166 (1996).CrossRefGoogle Scholar
34. Peulon, S., Lincot, D., J. Electrochem. Soc. 145, 864 (1998).CrossRefGoogle Scholar
35. Izaki, M., Omi, T., Appl. Phys. Lett. 68, 2439 (1996).CrossRefGoogle Scholar
36. Pauporte, Th., Lincot, D., Appl. Phys. Lett. 75, 3817 (1999).CrossRefGoogle Scholar
37. Liu, R., Vertegel, A.A., Bohannan, E.W., Sorenson, T.A., Switzer, J.A., Chem. Mater. 13, 508 (2001).CrossRefGoogle Scholar
38. Voss, T., Bekeny, C., Gutowski, J., Tena-Zaera, R., Elias, J., Levy-Clement, C., Mora-Sero, I., Bisquert, J., J. Appl. Phys. 106, 054304 (2009).CrossRefGoogle Scholar
39. Limmer, S.J., Kulp, E.A., Switzer, J.A., Langmuir 22, 10535 (2006).CrossRefGoogle Scholar
40. Switzer, J.A., Kothari, H.M., Poizot, P., Nakanishi, S., Bohannan, E.W., Nature 425, 490 (2003).CrossRefGoogle Scholar
41. Bohannan, E.W., Kothari, H.M., Nicic, I.M., Switzer, J.A., J. Am. Chem. Soc. 126, 488 (2004).CrossRefGoogle Scholar
42. Switzer, J.A., Am. Ceram. Soc. Bull. 66, 1521 (1987).Google Scholar
43. Kulp, E.A., Switzer, J.A., J. Am. Chem. Soc. 129, 15120 (2007).CrossRefGoogle Scholar
44. Kroger, F.A., J. Electrochem. Soc. 125, 2028 (1978).CrossRefGoogle Scholar
45. Hodes, G., Manassen, J., Cahen, D., Nature 261, 403 (1976).CrossRefGoogle Scholar
46. Miller, B., Menezes, S., Heller, A., J. Electroanal. Chem. 94, 85 (1978).CrossRefGoogle Scholar
47. Rajeshwar, K., Adv. Mater. 4, 23 (1992).CrossRefGoogle Scholar
48. Pandey, R.K., Sahu, S.N., Chandra, S., in Handbook of Semiconductor Electrodeposition, Hermann, A.M., Ed. (Marcel Dekker, New York, 1996).Google Scholar
49. Ruach-Nir, I., Zhang, Y., Biro, R.-P., Rubinstein, I., Hodes, G., J. Phys. Chem. B 107, 2174 (2003).CrossRefGoogle Scholar
50. Browson, J.R.S., Georges, C., Levy-Clement, C., Chem. Mater. 18, 6397 (2006).CrossRefGoogle Scholar
51. Ham, S., Jeon, S., Park, M., Choi, S., Paeng, K.-J., Myung, N., Rajeshwar, K., J. Electroanal. Chem. 638, 195 (2010).CrossRefGoogle Scholar
52. Stickney, J.L., Electroanalytical Chemistry: A Series of Advances (Marcel Dekker, New York, 1999).Google Scholar
53. Boone, B.E., Shannon, C., J. Phys. Chem. 100, 9480 (1996).CrossRefGoogle Scholar
54. Colletti, L.P., Teklay, D., Stickney, J.L., J. Electroanal. Chem. 369, 145 (1994).CrossRefGoogle Scholar
55. Huang, B.M., Colletti, L.P., Gregory, B.W., Anderson, J.L., Stickney, J.L., J. Electrochem. Soc. 142, 3007 (1995).CrossRefGoogle Scholar
56. Villegas, I., Stickney, J.L., J. Electrochem. Soc. 139, 686 (1992).CrossRefGoogle Scholar
57. Vaidyanathan, R., Cox, S.M., Happek, U., Banga, D., Mathe, M.K., Stickney, J.L., Langmuir 22, 10590 (2006).CrossRefGoogle Scholar
58. Venkatasamy, V., Jayaraju, N., Cox, S.M., Thambidurai, C., Stickney, J.L., J. Electrochem. Soc. 154, H720 (2007).CrossRefGoogle Scholar
59. Martin, C.R., Science 226, 1961 (1994).CrossRefGoogle Scholar
60. Nishizawa, M., Menon, V.P., Martin, C.R., Science 268, 700 (1995).CrossRefGoogle Scholar
61. Liu, Z., Xia, G., Zhu, F., Kim, S., Markovic, N., Chien, C.-L., Searson, P.C., J. Appl Phys. 103, 064313 (2008).CrossRefGoogle Scholar
62. Attard, G.S., Bartlett, P.N., Coleman, N.R.B., Elliott, J.M., Owen, J.R. Wang, J.H. Science 278, 838 (1997).CrossRefGoogle Scholar
63. Attard, G.S., Leclerc, S.A.A., Maniguet, S., Russell, A.E., Nandhakumar, I., Bartlett, P.N., Chem. Mater. 13, 1444 (2001).CrossRefGoogle Scholar
64. Abdelsalam, M.E., Bartlett, P.N., Baumberg, J.J., Coyle, S., Adv. Mater. 16 90 (2004).CrossRefGoogle Scholar
65. Morin, S.. Lachenwitzer, A., Magnussen, O.M.. Behm, R.J., Phys. Rev. Lett. 83, 5066 (1999).CrossRefGoogle Scholar
66. Allongue, P.. Maroun, F.. J. Phys. Condens. Matter 18 S97 (2006).CrossRefGoogle Scholar
67. Golan, Y., Margulis, L., Rubinstein, I., Hodes, G., Langmuir, 8 749 (1992).CrossRefGoogle Scholar
68. Golan, Y., Hatzor, A.. Hutchison, J.L., Rubinstein, I., Hodes, G.. Isr. J. Chem. 37, 303 (1997).CrossRefGoogle Scholar
69. Zhang, Y.. Hodes, G.. Rubinstein, I., Grünbaum, E., Nayak, R., Hutchison, J.L., Adv. Mater. 11, 1437 (1999).3.0.CO;2-1>CrossRefGoogle Scholar
70. Ruach-Nir, I., Wagner, H.D.. Rubinstein, I., Hodes, G.. Adv. Fund Mater. 13, 159 (2003).CrossRefGoogle Scholar
71. Li, W., Virtanen, J.A., Penner, R.M., Appl. Phys. Lett. 60, 1181 (1992).CrossRefGoogle Scholar
72. Li, W., Virtanen, J.A.. Penner, R.M., J. Phys. Chem. 96, 6529 (1992).CrossRefGoogle Scholar
73. Kolb, D.M., Ullmann, R., Will, T.. Science 275, 1097 (1997).CrossRefGoogle Scholar
74. Wei, Y.-M., Zhou, X.-S., Wang, J.-G., Tang, J., Mao, B.-W., Kolb, D.M., Small 4, 1355 (2008).CrossRefGoogle Scholar
75. Xiang, C., Kung, S.-C., Taggert, D.K., Yang, F., Thompson, M.A., Güell, G., Yang, Y., Penner, R.M., ACS Nano 2 1939 (2008).CrossRefGoogle Scholar
76. Yang, Y., Kung, S.C., Taggert, D.K., Xiang, C., Yang, F., Brown, M.A., Güell, A.G., Kruse, T.J., Hemminger, J.C., Penner, R.M., Nano Lett. 8, 2447 (2008).CrossRefGoogle Scholar
77. Lashmore, D.S., Dariel, M.P., J. Electrochem. Soc. 135, 1218 (1988).CrossRefGoogle Scholar
78. Moffat, T.P., J. Electrochem. Soc. 142, 3767 (1995).CrossRefGoogle Scholar
79. Ross, C.A., Annu. Rev. Mater. Sci. 24, 159 (1994).CrossRefGoogle Scholar
80. Hodes, G., Chemical Solution Deposition of Semiconductor Films (Marcel Dekker, New York, 2003).Google Scholar
81. Puscher, C., Dingl. J. 190, 421 (1869).Google Scholar
82. Bode, D.E., Physics of Thin Films (Academic Press, New York, 1966), Vol. 3, p. 275.Google Scholar
83. Chu, T.L., Chu, S.S., Ferekides, C., Wu, C.Q., Britt, J., Wang, C., J. Appl. Phys. 70, 7608 (1991).CrossRefGoogle Scholar
84. Kessler, J., Velthaus, K.O., Ruckh, M., Lainchiger, R., Schock, H.W., Lincot, D., Ortega, R., Vedel, J., Proc. 6th Int. PVSEC Conf., New Delhi (1992), p. 1005.Google Scholar
85. Hodes, G.. Albu-Yaron, A., Decker, F., Motisuke, P., Phys. Rev. B 36, 4215 (1987).CrossRefGoogle Scholar
86. Gorer, S., Hodes, G., J. Phys. Chem. 98, 5338 (1994).CrossRefGoogle Scholar
87. Hodes, G., Isr. J. Chem. 33, 95 (1993).CrossRefGoogle Scholar