Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-12-02T22:11:08.808Z Has data issue: false hasContentIssue false

Electrodeposited magnetic layers in the ultrathin limit

Published online by Cambridge University Press:  31 January 2011

P. Allongue
Affiliation:
Ecole Polytechnique, Palaiseau, France, [email protected]
Fouad Maroun
Affiliation:
Ecole Polytechnique, Palaiseau, France, [email protected]
Get access

Abstract

Magnetism is highly sensitive to the local atomic environment, a property that is at the origin of the unique magnetic behavior induced by the large ratio of surface or interface atoms to bulk atoms in nanostructures and ultrathin films. One key property of strong relevance in technology is interface-induced perpendicular magnetization anisotropy, which often is observed in ultrathin magnetic layers of only a few atomic planes. Establishing the existence of this phenomenon required an improved control of the growth modes, and advances in its understanding required detailed structural studies coupled with sensitive magnetic characterization. While magnetic nanostructures have been mainly realized using molecular beam epitaxy, the preparation of magnetic nanostructures in the electrolytic environment has become possible, with a degree of control that is comparable to that achieved in ultrahigh vacuum. This article reviews recent studies about epitaxial ultrathin magnetic layers electrodeposited on Au(111) single crystal electrodes with emphasis on in situ structural and magnetic characterization. This article also demonstrates that surface magnetism is very sensitive to the electrochemical interface.

Type
Technical Feature
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Chikazumi, S., Physics of Magnetism (Wiley, New York, 1964).Google Scholar
2. Meyerheim, H.L., Sander, D., Popescu, R., Kirschner, J., Robach, O., Ferrer, S., Phys. Rev. Lett. 93, 156105 (2004).CrossRefGoogle Scholar
3. Rusponi, S., Cren, T., Weiss, N., Epple, M., Buluschek, P., Claude, L., Brune, H., Nat. Mater. 2, 546 (2003).CrossRefGoogle Scholar
4. Meier, F., Zhou, L.H., Wiebe, J., Wiesendanger, R., Science 320, 82 (2008).CrossRefGoogle Scholar
5. Chappert, C., Fert, A., Van Dau, F.N., Nat. Mater. 6, 813 (2007).CrossRefGoogle Scholar
6. Gewirth, A.A., Niece, B.K., Chem. Rev. 97, 1129 (1997).CrossRefGoogle Scholar
7. Clavilier, J., Faure, R., Guinet, G., Durand, R., J. Electroanal. Chem. 107, 205 (1979).CrossRefGoogle Scholar
8. Nichols, R.J., Kolb, D.M., Behm, R.J., J. Electroanal. Chem. 313, 109 (1991).CrossRefGoogle Scholar
9. Magnussen, O.M., Hotlos, J., Nichols, R.J., Kolb, D.M., Behm, R.J., Phys. Rev. Lett. 64, 2929 (1990).CrossRefGoogle Scholar
10. Allongue, P., Maroun, F., J. Phys. Condens. Matter 18, S97 (2006).CrossRefGoogle Scholar
11. Allongue, P., Maroun, F., Curr. Opin. Solid-State Mater. Sci. 10, 173 (2006).CrossRefGoogle Scholar
12. Kibler, L.A., El-Aziz, A.M., Hoyer, R., Kolb, D.M., Angew. Chem. Int. Ed. 44, 2080 (2005).CrossRefGoogle Scholar
13. Allongue, P., Maroun, F., Jurca, H.F., Tournerie, N., Savidand, G., Cortes, R., Surf. Sci. 603, 1831 (2009).CrossRefGoogle Scholar
14. Cagnon, L., Gundel, A., Devolder, T., Morrone, A., Chappert, C., Schmidt, J.E., Allongue, P., Appl. Surf. Sci. 164, 22 (2000).CrossRefGoogle Scholar
15. Gundel, A., Cagnon, L., Gomes, C., Morrone, A., Schmidt, J., Allongue, P., Phys. Chem. Chem. Phys. 3, 3330 (2001).CrossRefGoogle Scholar
16. Gundel, A., Morrone, A., Schmidt, J.E., Cagnon, L., Allongue, P., J. Magn. Magn. Mater. 226, 1616 (2001).CrossRefGoogle Scholar
17. Brune, H., Surf. Sci. Rep. 31, 121 (1998).CrossRefGoogle Scholar
18. Krug, K., Stettner, J., Magnussen, O.M., Phys. Rev. Lett. 96, 246101 (2006).CrossRefGoogle Scholar
19. Cagnon, L., Devolder, T., Cortes, R., Morrone, A., Schmidt, J.E., Chappert, C., Allongue, P., Phys. Rev. B 63, 104419 (2001).CrossRefGoogle Scholar
20. Allongue, P., Cagnon, L., Gomes, C., Gundel, A., Costa, V., Surf. Sci. 557, 41 (2004).CrossRefGoogle Scholar
21. Kolb, D.M., Przasnyski, M., Gerischer, H., J. Electroanal. Chem. 54, 25 (1974).CrossRefGoogle Scholar
22. Del Popolo, M.G., Leiva, E.P.M., Mariscal, M., Schmickler, W., Surf. Sci. 597, 133 (2005).CrossRefGoogle Scholar
23. Bubendorff, J.L., Cagnon, L., Costa Kieling, V., Bucher, J.P., Allongue, P., Surf. Sci. 384, L836 (1997).CrossRefGoogle Scholar
24. Meyer, J.A., Baikie, I.D., Kopatzki, E., Behm, R.J., Surf. Sci. 365, L647 (1996).CrossRefGoogle Scholar
25. Kleinert, M., Waibel, H.F., Engelmann, G.E., Martin, H., Kolb, D.M., Electrochim. Acta 46, 3129 (2001).CrossRefGoogle Scholar
26. Voigtländer, B., Meyer, G., Amer, N.M., Phys. Rev. B 44, 10354 (1991).CrossRefGoogle Scholar
27. Moller, F.A., Magnussen, O.M., Behm, R.J., Phys. Rev. Lett. 77, 5249 (1996).CrossRefGoogle Scholar
28. Moller, F.A., Magnussen, O.M., Behm, R.J., Phys. Rev. Lett. 77, 3165 (1996).CrossRefGoogle Scholar
29. Moller, F.A., Kintrup, J., Lachenwitzer, A., Magnussen, O.M., Behm, R.J., Phys. Rev. B 56, 12506 (1997).CrossRefGoogle Scholar
30. Damian, A., Maroun, F., Allongue, P., Phys. Rev. Lett. 102, 196101 (2009).CrossRefGoogle Scholar
31. Gundel, A., Devolder, T., Chappert, C., Schmidt, J.E., Cortes, R., Allongue, P., Physica B 354, 282 (2004).CrossRefGoogle Scholar
32. Moruzzi, V.L., Marcus, P.M., Kübler, J., Phys. Rev. B 39, 6957 (1989).CrossRefGoogle Scholar
33. Stroscio, A.J., Pierce, D.T., Dragoset, R.A., First, P.N., J. Vac. Sci. Technol., A 10, 1981 (1992).CrossRefGoogle Scholar
34. Voigtländer, B., Meyer, G., Amer, N.M., Surf. Sci. 255, L529 (1991).CrossRefGoogle Scholar
35. Ohresser, P., Shen, J., Barthel, J., Zheng, M., Mohan, Ch V., Klaua, M., Kirschner, J., Phys. Rev. B 59, 3696 (1999).CrossRefGoogle Scholar
36. Biedermann, A., Rupp, W., Schmid, M., Varga, P., Phys. Rev. B: Condens. Matter 73, 165418 (2006).CrossRefGoogle Scholar
37. Tsujikawa, M., Hosokawa, A., Oda, T., J. Phys. Condens. Matter 19, 365208 (2007).CrossRefGoogle Scholar
38. Repetto, D., Honolka, J., Rusponi, S., Brune, H., Enders, A., Kern, K., Appl. Phys. A 82, 109112 (2006).CrossRefGoogle Scholar
39. Cagnon, L., PhD thesis, Université Paris Sud, 2000.Google Scholar
40. Prod'homme, P., Maroun, F., Cortes, R., Allongue, P., Appl. Phys. Lett. 93, 171901 (2008).CrossRefGoogle Scholar
41. Allongue, P., Souteyrand, E., J. Electroanal. Chem. 362, 79 (1993).CrossRefGoogle Scholar
42. Allongue, P., Souteyrand, E., Allemand, L., J. Electroanal. Chem. 362, 89 (1993).CrossRefGoogle Scholar
43. Prod'homme, P., Maroun, F., Cortes, R., Allongue, P., Hamrle, J., Ferre, J., Jamet, J.P., Vernier, N., J. Magn. Magn. Mater. 315, 26 (2007).CrossRefGoogle Scholar
44. Johnson, M.T., Bloemen, P.J.H., den Broeder, F.J.A., de Vries, J.J., Rep. Prog. Phys. 59, 1409 (1996).CrossRefGoogle Scholar
45. Beauvillain, P., Bounouh, A., Chappert, C., Megy, R., Ould-Mahfoud, S., Renard, J.P., Veillet, P., Weller, D., Corno, J., J. Appl. Phys. 76, 6078 (1994).CrossRefGoogle Scholar
46. Neel, L., C.R. Hebd. Seances Acad. Sci. 237, 1468 (1953).Google Scholar
47. Chappert, C., Bruno, P., Bartenlian, B., Beauvillian, P., Bounouh, A., Megy, R., Veillet, P., J. Magn. Magn. Mater. 148, 165 (1995).CrossRefGoogle Scholar
48. Pommier, J., Meyer, P., Pénissard, G., Ferré, J., Bruno, P., Renard, D., Phys. Rev. Lett. 65, 2054 (1990).CrossRefGoogle Scholar
49. Savidand, G., PhD thesis, Ecole Polytechnique, 2007.Google Scholar
50. Menke, E.J., Thompson, M.A., Xiang, C., Yang, L.C., Penner, R.M., Nat. Mater 5, 914 (2006).CrossRefGoogle Scholar
51. Piraux, L., Encinas, A., Vila, L., Matefi-Tempfli, S., Matefi-Tempfli, M., Darques, M., Elhoussine, F., Michotte, S., J. Nanosci. Nanotechnol. 5, 372 (2005).CrossRefGoogle Scholar
52. Zhukov, A.A., Goncharov, A.V., de Groot, P.A.J., Bartlett, P.N., Ghanem, M.A., J. Appl. Phys. 93, 7322 (2003).CrossRefGoogle Scholar
53. Brune, H., Giovannini, M., Bromann, K., Kern, K., Nature 394, 451 (1998).CrossRefGoogle Scholar
54. Weiss, N., Cren, T., Epple, M., Rusponi, S., Baudot, G., Rohart, S., Tejeda, A. Repain, V., Rousset, S., Ohresser, P., Scheurer, F., Bencok, P., Brune, H., Phys. Rev. Lett. 95 (2005).Google Scholar
55. Morin, S., Lachenwitzer, A., Magnussen, O.M., Behm, R.J., Phys. Rev. Lett 83, 5066 (1999).CrossRefGoogle Scholar
56. Zach, M.P., Ng, K.H., Penner, R.M., Science 290, 2120 (2000).CrossRefGoogle Scholar
57. Munford, M.L., Cortes, R., Allongue, P., Sens. Mater. 13, 259 (2001).Google Scholar
58. Fleurence, A., Agnus, G., Maroutian, T., Bartenlian, B., Beauvillain, P., Moyen, E. Hanbucken, M., Appl. Surf. Sci. 254, 3147 (2008).CrossRefGoogle Scholar
59. Weisheit, M., Fahler, S., Marty, A., Souche, Y., Poinsignon, C., D. Givord Science 315, 349 (2007).Google Scholar
60. Maruyama, T., Shiota, Y., Nozaki, T., Ohta, K., Toda, N., Mizuguchi, M., Tulapurkar, A.A., Shinjo, T., Shiraishi, M., Mizukami, S., Ando, Y., Suzuki, Y., Nat. Nanotechnol. 4, 158 (2009).CrossRefGoogle Scholar
61. Bard, A.J., Faulkner, L.R., Electrochemical Methods: Fundamentals and Applications (Wiley, New York, 2001).Google Scholar
62. Maroun, F., Ozanam, F., Magnussen, O.M., Behm, R.J., Science 293, 1811 (2001).CrossRefGoogle Scholar
63. Jurca, H.F., PhD thesis, Ecole Polytechnique (2009).Google Scholar
64. de Abril, O., Gündel, A., Maroun, F., Allongue, P., Schuster, R., Nanotechnology 325301 (2008).CrossRefGoogle Scholar