Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-02T19:04:02.377Z Has data issue: false hasContentIssue false

Electrical Studies of Semiconductor-Nanocrystal Colloids

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

The study of nanometer-sized semiconductor crystals has been advancing at a rapid pace. Much of the interest in these materials stems from the fact that their physical and chemical properties can be systematically tuned by variation of the size, according to increasingly well-established scaling laws. This article describes colloidal semiconductor nanocrystals belonging to the II-VI and III-V families, and outlines strategies for obtaining electrical access to such dots.

If an inorganic cluster exceeds a certain size—generally in the 10s of unit cells—then it will likely possess a bonding geometry characteristic of a bulk phase. Above this critical size, the nature of the chemical bonds in the cluster remains fixed as a function of the size, but the total number of atoms—or the surface to volume ratio—changes smoothly. This leads to a slow extrapolation of the properties for ideal nanocrystals toward bulk values with increasing size, according to the scaling laws. The ability to control systematically the properties of inorganic materials by variation of size and shape is an important development with many implications for how materials should be processed and assembled.

Many scaling laws have been investigated, including the size variation of bandgap, charging energy, magnetization reversal, and melting. Study of the scaling laws reveals lessons for how to make nanocrystals. This article focuses on the properties of colloidal semiconductor nanocrystals, how to make them, and ways of gaining electrical access to them. Advances in metal, magnetic, and structural nanomaterials are also occurring. Semiconductor dots produced by other processing techniques in the articles by Bimberg, Gammon, and Tarucha in this issue.

Type
Semiconductor Quantum Dots
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Brus, L.E., Efros, A.L., and Itoh, T., “Special Issue on Spectroscopy of Isolated and Assembled Semiconductor Nanocrystals-Introduction,” J. Lumin. 70 (V70) R7R8 (1996).Google Scholar
2.Weller, H., “Optical Properties Of Quantized Semiconductor Particles,” Philos. Trans. R. Soc. London, Ser. A 354 (1708) (1996) p. 757.Google Scholar
3.Vossmeyer, T., Reck, G., Schulz, B., et al., “Double-Layer Superlattice Structure Built Up OfCd32s14(Sch2ch(Oh)Ch3)(36)Center-Dot-4h(2)O Clusters,” J. Am. Chem. Soc. 117 (51) (1995) p. 12881.CrossRefGoogle Scholar
4.Wang, Y., Harmer, M., and Herron, N., “Towards Monodisperse Semiconductor Clusters-Preparation and Characterization of Similar-to 13-Angstrom Thiophenolate-Capped CdS Clusters,” Israel J. Chem. 33 (1) (1993) p. 31.CrossRefGoogle Scholar
5.Alivisatos, A.P., “Semiconductor Clusters, Nanocrystals, and Quantum Dots,” Science 271 (5251) (1996) p. 933.CrossRefGoogle Scholar
6.Harfenist, S.A., Wang, Z.L., Alvarez, M.M., et al., “Highly Oriented Molecular Ag Nanocrystal Arrays,” J. Phys. Chem. 100 (33) (1996) p. 13904.CrossRefGoogle Scholar
7.Whetten, R.L., Khoury, J.T., Alvarez, M.M., et al., “Nanocrystal Gold Molecules,” Adv. Mater. 8 (5) (1996) p. 428.CrossRefGoogle Scholar
8.Collier, C.P., Saykally, R.J., Shiang, J.J., et al., “Reversible Tuning of Silver Quantum Dot Monolayers Through the Metal-Insulator Transition,” Science 277 (5334) (1997) p. 1978.CrossRefGoogle Scholar
9.Jing, S., Gider, S., Babcock, K., et al., “Magnetic Clusters in Molecular Beams, Metals, and Semiconductors,” Science 271 (5251) (1996) p. 937.Google Scholar
10.McHale, J.M., Auroux, A., Perrotta, A.J., et al., “Surface Energies and Thermodynamic Phase Stability in Nanocrystalline Aluminas,” Science 277 (5327) (1997) p. 788.CrossRefGoogle Scholar
11.Gleiter, H., “Nanostructured Materials,” Adv. Mater. 4 (7) (1992) p. 474.CrossRefGoogle Scholar
12.Gleiter, H., “Nanostructured Materials: State of the Art and Perspectives,” Z. Metallk. 86 (2) (1995) p. 78.Google Scholar
13.Buffat, Ph. and Borel, J.P., “Size Effect on the Melting Temperature of Gold Particles,” Phys. Rev. A 13 (6) (1976) p. 2287.CrossRefGoogle Scholar
14.Goldstein, A.N., Echer, C.M., and Alivisatos, A.P., “Melting in Semiconductor Nanocrystals,” Science 256 (5062) (1992) p. 1425.CrossRefGoogle ScholarPubMed
15.Murray, C.B. , Norris, D.J. , and Bawendi, M.G., “Synthesis and Characterization of Nearly Monodisperse Cde (E = S, Se, Te) Semiconductor Nanocrystallites,” J. Am. Chem. Soc. 115 (19) (1993) p. 8706.CrossRefGoogle Scholar
16.Katari, J.E.B. , Colvin, V.L. , and Alivisatos, A.P., “X-Ray Photoelectron Spectroscopy of CdSe Nanocrystals With Applications to Studies of the Nanocrystal Surface,” J. Phys. Chem. 98 (15) (1994) p. 4109.CrossRefGoogle Scholar
17.Olshavsky, M.A., Goldstein, A.N., and Alivisatos, A.P., “Organometallic Synthesis if GaAs Crystallites Exhibiting Quantum Confinement,” J. Am. Chem. Soc. 112 (25) (1990) p. 9438.CrossRefGoogle Scholar
18.Mićić, O.I. and Nozik, A.J., “Synthesis and Characterization of Binary and Ternary III-V Quantum Dots,” J. Lumin. 70 (V70) (1996) p. 95.CrossRefGoogle Scholar
19.Guzelian, A.A., Katari, J.E.B.Kadavanich, A.V., Banin, U., Hamad, K., Juban, E., Alivisatos, A.P., Wolters, R.H., Arnold, C.C., and Heath, J.R., “Synthesis of Size-Selected, Surface-Passivated InP Nanocrystals,” J. Phys. Chem. 100 (17) (1996) p. 7212.CrossRefGoogle Scholar
20.Guzelian, A.A. , Banin, U., Kadavanich, A.V., Peng, X., and Alivisatos, A.P., “Colloidal Chemical Synthesis and Characterization of InAs Nanocrystal Quantum Dots,” Appl. Phys. Lett. 69 (10) (1996) p. 1432.CrossRefGoogle Scholar
21.Tolbert, S.H. and Alivisatos, A.P., “HighPressure Structural Transformations in Semiconductor Nanocrystals,” Annu. Rev. Phys. Chem. 46 (V46) (1995) p. 595.CrossRefGoogle ScholarPubMed
22.Chen, C-C., Herhold, A.B., Johnson, C.S., et al., “Size Dependence of Structural Metastability in Semiconductor Nanocrystals,” Science 276 (1997) p. 398.CrossRefGoogle ScholarPubMed
23.Bawendi, M.G., Steigerwald, M.L., and Brus, L.E., “The Quantu m Mechanics of Larger Semiconductor Clusters (Quantum Dots),” Annu. Rev. Phys. Chem. 41 (V41) (1990) p. 477.CrossRefGoogle Scholar
24.Woggon, U., Optical Properties of Semiconductor Quantum Dots (Springer, Berlin, 1996).Google Scholar
25.Hines, M.A. and Guyotsionnest, P., “Synthesis an d Characterization of Strongly Luminescing ZnS-Capped CdSe Nanocrystals,” J. Phys. Chem. 100 (2) (1996) p. 468.CrossRefGoogle Scholar
26.Peng, X.G. , Schlamp, M.C. , Kadavanich, A.V., et al., “Epitaxial Growth of Highly Luminescent CdSe/CdS Core/Shell Nanocrystals With Photostability and Electronic Accessibility,” J. Am. Chem. Soc. 119 (30) (1997) p. 7019.CrossRefGoogle Scholar
27.Chan, Y.N.C., Schrock, R.R., and Cohen, R.E., “Synthesis of Single Silver Nanoclusters Within Spherical Microdomains in Block Copolymer Films,” J. Am. Chem. Soc. 114 (18) (1992) p. 7295.CrossRefGoogle Scholar
28.Cummins, C.C. , Schrock, R.R., and Cohen, R.E., “Synthesis of ZnS and CdS Within Romp Block Copolymer Microdomains,” Chem. Mater. 4 (1) (1992) p. 27.CrossRefGoogle Scholar
29.Antonietti, M. and Goltner, C., “Superstructures of Functional Colloids: Chemistry on the Nanometer Scale,” Angew. Chem. (in English) 36 (9) (1997) p. 910.CrossRefGoogle Scholar
30.O'Regan, B. and Gratzel, M., “A Low-Cost, High-Efficiency Solar Cell Based on Dye-Sensitized Colloidal TiO2 Films,” Nature 353 (6346) (1991) p. 737.CrossRefGoogle Scholar
31.Greenham, N.C., Peng, X.G. , and Alivisatos, A.P., “Charge Separation and Transport in Conjugated-Polymer/Semiconductor-Nanocrystal Composites Studied by Photoluminescence Quenching and Photoconductivity,” Phys. Rev. B 54 (24) (1996) p. 17628.CrossRefGoogle ScholarPubMed
32.Schlamp, M., Peng, X., and Alivisatos, A.P., “Improved Efficiencies in Light Emitting Diodes Made With CdSe (CdS) Core/Shell Type Nanocrystals and a Semiconductor Polymer,” J. Appl. Phys. in press.Google Scholar
33.Colvin, V.L. , Schlamp, M.C., and Alivisatos, A.P., “Light-Emitting Diodes Made From Cadmium Selenide Nanocrystals and a Semiconducting Polymer,” Nature 370 (6488) (1994) p. 354.CrossRefGoogle Scholar
34.Dabbousi, B.O., Bawendi, M.G., Onitsuka, O., et al., “Electroluminescence From CdSe Quantum-Dot Polymer Composites,” Appl. Phys. Lett. 66 (11) (1995) p. 1316.CrossRefGoogle Scholar
35.Klein, D.L., McEuen, P.L., Katari, J.E.B., et al., “An Approach to Electrical Studies of Single Nanocrystals,” Appl. Phys. Lett. 68 (18) (1996) p. 2574.CrossRefGoogle Scholar
36.Blanton, S.A., Dehestani, A., Lin, P.C., et al., “Photoluminescence of Single Semiconductor Nanocrystallites by Two-Photon Excitation Microscopy,” Chem. Phys. Lett. 229 (3) (1994) p. 317.CrossRefGoogle Scholar
37.Blanton, S.A., Hines, M.A., Schmidt, M.E., et al., “Two-Photon Spectroscopy and Microscopy of II-VI Semiconductor Nanocrystals,” J. Lumin. 70 (V70) (1996) p. 253.CrossRefGoogle Scholar
38.Nirmal, M., Dabbousi, B.O., Bawendi, M.G., Macklin, J.J., Trautman, J.K., Harris, T.D., and Brus, L.E., “Fluorescence Intermittency in Single Cadmium Selenide Nanocrystals,” Nature 383 (6603) (1996) p. 802.CrossRefGoogle Scholar
39.Empedocles, S.A., Norris, D.J., and Bawendi, M.G., “Photoluminescence Spectroscopy of Single CdSe Nanocrystallite Quantum Dots,” Phys. Rev. Lett. 77 (18) (1996) p. 3873.CrossRefGoogle ScholarPubMed
40.Klein, D.L. , Roth, R., Lim, A.K., Alivisatos, A.P., and McEuen, P., “A Single-Electron Transistor Made From a Cadmium Selenide Nanocrystal,” Nature 389 (1997) p. 699.CrossRefGoogle Scholar
41.Alivisatos, A.P., Johnsson, K.P., Peng, X.G., et al., “Organization of Nanocrystal Molecules Using DNA,” Nature 382 (6592) (1996) p. 609.CrossRefGoogle ScholarPubMed
42.Mirkin, C.A., Letsinger, R.L., Mucic, R.C., et al., “A DNA-Based Method for Rationally Assembling Nanoparticles Into Macroscopic Materials,” Nature p. 607.Google Scholar
43.Ohara, P.C., Heath, J.R., and Gelbart, W.M., “Self-Assembly of Submicrometer Rings of Particles From Solutions of Nanoparticles,” Angew. Chem. (in English) 36 (10) (1997) p. 1078.CrossRefGoogle Scholar
44.Vossmeyer, T., Delonno, E., and Heath, J.R.,Google Scholar