Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-28T14:28:40.688Z Has data issue: false hasContentIssue false

Elastic and Anelastic Behavior of Materials in Small Dimensions

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

Under certain circumstances, decreasing the dimensions of a material may lead to elastic or anelastic properties that diverge from bulk behavior. A distinction is made between elastic deformation, for which bond rearrangements are not required, and anelastic behavior, which involves reversible deformation due to defect motion. Elastic deformation (due to bond stretching) remains structure-insensitive down to near-atomic length scales, and only small deviations are expected (of the order of 10%). More significant deviations can be observed in special cases, which are described in the article. However, elastic moduli that are much lower than expected are sometimes seen, even in careful experiments. It now appears that this behavior may be explainable by time-dependent anelastic relaxation mechanisms. In contrast to purely elastic behavior, anelastic behavior is very sensitive to microstructure and is found to be common and often significant when things become small.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Hesemann, H.Th., Kraft, O., Arzt, E., Müllner, P., Nowak, D., Baker, S.P., Finkelstein, K., and Smilgies, D., “A Detailed Study of the Texture Evolution during Martensitic Phase Transformation in Cobalt Thin Films,” presented at Symposium P, Materials Research Society Meeting, San Francisco, April 19, 2001, paper No. P6.7.Google Scholar
2.Yang, W.M.C., Tsakalakos, T., and Hilliard, J.E., J. Appl. Phys. 48 (1977) p. 876.CrossRefGoogle Scholar
3.Korn, D., Morsch, A., Birringer, R., Arnold, W., and Gleiter, H., J. de Phys. 49 (1988) p. 769.Google Scholar
4.Baker, S.P. and Nix, W.D., J. Mater. Res. 9 (1994) p. 3145.CrossRefGoogle Scholar
5.Sanders, P.G., Eastman, J.A., and Weertman, J.R., Acta Mater. 45 (1997) p. 4019.CrossRefGoogle Scholar
6.Sakai, S., Tanimoto, H., and Mizubayashi, H., Acta Mater. 47 (1) (1998) p. 211.CrossRefGoogle Scholar
7.Schiøtz, J., Vegge, T., Di Tolla, F.D., and Jacobsen, K.W., Phys. Rev. B 60 (1999) p. 11971.CrossRefGoogle Scholar
8.Thompson, C.V. and Carel, R., Mater. Sci. Forum 204–206 (1996) p. 83.CrossRefGoogle Scholar
9.Ruud, J.A., Josell, D., Spaepen, F., and Greer, A.L., J. Mater. Res. 8 (1993) p. 112.CrossRefGoogle Scholar
10.Read, D.T., Meas. Sci. Technol. 9 (1998) p. 676.CrossRefGoogle Scholar
11.Huang, H. and Spaepen, F., Acta Mater. 48 (2000) p. 3261.CrossRefGoogle Scholar
12.Vinci, R.P., Cornella, G., and Bravman, J.C., in Proc. 5th Int. Workshop on Stress Induced Phenomena in Metallization, Vol. 491, edited by Kraft, O., Arzt, E., Volkert, C.A., Ho, P.S., and Okabayashi, H. (American Institute of Physics, Woodbury, NY, 1999) p. 240.Google Scholar
13.Kalkman, A.J., Verbruggen, A.H., and Janssen, G.C.A.M., Appl. Phys. Lett. 78 (2001) p. 2673.CrossRefGoogle Scholar
14.Berry, B.S. and Pritchet, W.C., J. de Phys. 42 (1981) p. 1111.Google Scholar
15.Kung, H. and Foecke, T., MRS Bull. 24 (2) (1999) p. 14.Google Scholar
16.Bishop, D., Heuer, A., and Williams, D., MRS Bull. 26 (2001) p. 282.CrossRefGoogle Scholar
17.Zener, C., Elasticity and Anelasticity of Metals (University of Chicago Press, Chicago, 1948).Google Scholar
18.Nowick, A.S. and Berry, B.S., Anelastic Relaxation in Crystalline Solids (Academic Press, New York, 1972).Google Scholar
19.Kobrinsky, M.J. and Thompson, C.V., Acta Mater. 48 (2000) p. 625.CrossRefGoogle Scholar
20.Harms, U., Klose, F., Neuhäuser, H., Fricke, K., Peiner, E., and Schlachetzki, A., J. Alloys Compd. 310 (2000) p. 449.CrossRefGoogle Scholar
21.Van Swygenhoven, H., Caro, A., and Farkas, D., Mater. Sci. Eng., A 309–310 (2001) p. 440.Google Scholar
22.Bonetti, E., Campari, E.G., Pasquini, L., and Sampaolesi, E., J. Appl. Phys. 84 (1998) p. 4219.CrossRefGoogle Scholar
23.Berry, B.S., in Diffusion Phenomena in Thin Films and Microelectronic Materials, edited by Gupta, D. and Ho, P.S. (Noyes Publications, Park Ridge, NJ, 1972).Google Scholar
24.Zener, C., Phys. Rev. 60 (1941) p. 906.CrossRefGoogle Scholar
25., T.S., Phys. Rev. 71 (1947) p. 533.CrossRefGoogle Scholar
26.Bohn, H.G., Prieler, M., Su, C.M., Trinkhaus, H., and Schilling, W., Phys. Chem. Solids 55 (1994) p. 1157.CrossRefGoogle Scholar
27.Prieler, M., Bohn, H.G., Schilling, W., and Trinkhaus, H., J. Alloys Compd. 211/212 (1994) p. 424.CrossRefGoogle Scholar
28.Bohn, H.G. and Su, C.M., Mater. Sci. Forum 119–121 (1993) p. 273.CrossRefGoogle Scholar
29.Lifshitz, R. and Roukes, M.L., Phys. Rev. B 61 (2000) p. 5600.CrossRefGoogle Scholar