Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-27T06:22:27.808Z Has data issue: false hasContentIssue false

The Dynamics of Mobile Ions in Ionically Conducting Glasses and Other Materials

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

The range of applications for ionically conducting materials in technology is very broad and includes batteries; fuel cells; sensors; electrochromic displays; catalysts, oxygen, and hydrogen pumps; and bionics. In most of these applications, the mobility of the ions is a determining factor for optimum performance. Examples are liquid-electrolyte and plastic Li+ ion batteries for portable electronics, solid oxide fuel cells such as the oxygen ion-conducting stabilized zirconia electrolyte for energy conversion, and exchange of different ions in oxide glasses for the fabrication of micro-optic lenses. Therefore research on the dynamics of ionic transport that clarifies the mechanisms limiting the mobility of the ions is useful. These dynamic processes are also fascinating from a basic research point of view and qualitatively follow general patterns independent of the chemical and physical structures of the materials, suggesting that some fundamental physical mechanism is at work. On a quantitative level, the ionic-transport properties depend on the structures of the materials seemingly in well-defined patterns, which can be used to advantage in choosing materials for specific applications.

Type
New Functionality in Glass
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Angell, C.A., Chem. Rev. 90 (1990) p. 523; ibid., Annu. Rev. Phys. Chem. 172 (1992) p. 1.CrossRefGoogle Scholar
2. See collection of papers in J. Non-Cryst. Solids 131–133 (1991); ibid. 172–174 (1994).Google Scholar
3.Ngai, K.L., J. Non-Cryst. Solids 203 (1996) p. 232.CrossRefGoogle Scholar
4. See collection of papers in Solid State Ionics 105 (1998) p. 1.CrossRefGoogle Scholar
5. See collection of papers in J. Non-Cryst. Solids 235–237 (1998).Google Scholar
6.Cramer, C. and Buscher, M., Solid State Ionics 105 (1998) p. 109.CrossRefGoogle Scholar
7.Kincs, J. and Martin, S.W., Phys. Rev. Lett. 76 (1995) p. 70.CrossRefGoogle Scholar
8.Howell, F.S., Bose, R.A., Macedo, P.B., and Moynihan, C.T., J. Phys. Chem. 78 (1974) p. 639.CrossRefGoogle Scholar
9.Moynihan, C.T., Boesch, L.P., and Laberge, N.L., Phys. Chem. Glasses 14 (1973) p. 122.Google Scholar
10.Babcock, C.L., J. Am. Ceram. Soc. 17 (1934) p. 329.CrossRefGoogle Scholar
11.Simmons, J.H., Elterman, P.B., Simmons, C.J., and Mohr, R.K., J. Am. Ceram. Soc. 62 (1979) p. 158.CrossRefGoogle Scholar
12. For example, see Ngai, K.L., Philos. Mag. B77 (1998) p. 187.CrossRefGoogle Scholar
13.Whittingham, M.S. and Higgins, R.A., J. Chem. Phys. 54 (1971) p. 414.CrossRefGoogle Scholar
14.Ngai, K.L., Greaves, G.N., and Moynihan, C.T., Phys. Rev. Lett. 80 (1998) p. 1018.CrossRefGoogle Scholar
15.Haven, Y. and Verkerk, B., Phys. Chem. Glasses 6 (1965) p. 38.Google Scholar
16.Terai, R. and Hayami, R., J. Non-Cryst. Solids 18 (1975) p. 217.CrossRefGoogle Scholar
17.Kelly, J.E. III, Cordare, J.F., and Tomozawa, M., ibid. 41 (1980) p. 47; Kelly, J.E. III and Tomozawa, M., J. Non-Cryst. Solids 51 (1982) p. 345.CrossRefGoogle Scholar
18.Kahnt, H., Ber. Bunsenges Phys. Chem. 95 (1991) p. 1021.CrossRefGoogle Scholar
19.Moynihan, C.T. and Lesikar, A.V., J. Am. Ceram. Soc. 64 (1981) p. 40.CrossRefGoogle Scholar
20.Richert, R. and Wagner, H., Solid State Ionics 105 (1998) p. 167.CrossRefGoogle Scholar
21.Roling, B., Happe, A., Funke, K., and Ingram, M.D., Phys. Rev. Lett. 78 (1997) p. 2160.CrossRefGoogle Scholar
22.Jain, H. and Krishnaswami, S., Solid State Ionics 105 (1998) p. 129.CrossRefGoogle Scholar
23.Cordaro, J.F. and Tomozawa, M., J. Am. Ceram. Soc. 64 (1981) p. 713.CrossRefGoogle Scholar
24.Ngai, K.L., Mundy, J.N., Jain, H., Kanert, O., and Balzer-Jöllenbeck, G., Phys. Rev. B 39 (1989) p. 6169.CrossRefGoogle Scholar
25.Patel, H. and Martin, S.W., Phys. Rev. 45 (1992) p. 10292.CrossRefGoogle Scholar
26.Munro, B., Schräder, M., and Heitjans, P., Ber. Bunsenges Phys. Chem. 96 (1992) p. 1718.CrossRefGoogle Scholar
27.Ngai, K.L. and Strom, U., Phys. Rev. B 38 (1988) p. 10350.CrossRefGoogle Scholar
28.León, C., Santamaria, J., Paris, M.A., Sanz, J., Ibarra, J., and Torres, L.M., Phys. Rev. 56 (1997) p. 5302.CrossRefGoogle Scholar
29.León, C., Lucia, M.L., Santamaria, J., and Sanchez-Quesada, F., Phys. Rev. 57 (1998) p. 41.CrossRefGoogle Scholar
30.Jain, H. and Hsich, C.H., J. Non-Cryst. Solids 172–174 (1994) p. 1408.CrossRefGoogle Scholar
31.Ngai, K.L., Rendell, R.W., and Jain, H., Phys. Rev. B 30 (1984) p. 2133.CrossRefGoogle Scholar
32.Kohlrausch, R., Pogg. Ann. Phys. 12 (3) (1847) p. 393.Google Scholar
33.Moynihan, C.T., J. Non-Cryst. Solids 172–174 (1994) p. 1395; ibid. 203 (1996) p. 359.CrossRefGoogle Scholar
34.Burns, A., Chryssikos, G.D., Tombari, E., Cole, R.H., and Risen, W.M., Phys. Chem. Glasses 30 (1989) p. 264.Google Scholar
35.Pimenov, A., Lunkenheimer, P., Rail, H., Kohlhaas, R., and Loidl, A., Phys. Rev. E 54 (1996) p. 676.CrossRefGoogle Scholar
36.Sidebottom, D.L., Green, P.F., and Brow, R.K., Phys. Rev. Lett. 74 (1995) p. 5068.CrossRefGoogle Scholar
37.Nowick, A.S., Vaysleyb, A.V., and Liu, W., Solid State Ionics 105 (1998) p. 121.CrossRefGoogle Scholar
38.Lu, X. and Jain, H., J. Phys. Chem. Solids 55 (1994) p. 1433.CrossRefGoogle Scholar
39.Nowick, A.S., Lim, B.S., and Vaysleb, A.V., J. Non-Cryst. Solids 172–174 (1994) p. 1243.CrossRefGoogle Scholar
40.Sidebottom, D.L., Green, P.F., and Brow, R.K., J. Non-Cryst. Solids 203 (1996) p. 300.CrossRefGoogle Scholar
41.Moynihan, C.T. and Ngai, K.L. (unpublished).Google Scholar
42.Ngai, K.L., Strom, U., and Kanert, O., Phys. Chem. Glasses 33 (1992) p. 109;Google Scholar
Strom, U., Ngai, K.L., and Kanert, O., J. Non-Cryst. Solids 131–133 (1991) p. 1011.CrossRefGoogle Scholar
43.Ngai, K.L., Jain, H., and Kanert, O., J. Non-Cryst. Solids 222 (1997) p. 383.CrossRefGoogle Scholar
44.Sidebottom, D.L., Green, P.F., and Brow, R.K., J. Non-Cryst. Solids 183 (1995) p. 151.CrossRefGoogle Scholar
45.Roling, B., Solid State Ionics 105 (1998) p. 185.CrossRefGoogle Scholar
46.Ingram, M.D., Current Opinion Solid State Mater. Sci. 2 (1997) p. 399.CrossRefGoogle Scholar
47.Ngai, K.L. and León, C. (unpublished).Google Scholar
48.Isard, J.O., J. Non-Cryst. Solids 1 (1969) p. 235.CrossRefGoogle Scholar
49.Day, D.E., J. Non-Cryst. Solids 21 (1976) p. 343.CrossRefGoogle Scholar
50.Ingram, M.D., Phys. Chem. Glasses 28 (1987) p. 215.Google Scholar