Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-24T03:39:13.482Z Has data issue: false hasContentIssue false

Ductility of Nanostructured Materials

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

Ductility is defined as the ability of a material to change shape without fracture. It is of critical importance for engineering materials for both manufacturability and Performance. Measures of ductility include percent elongation (uniform plastic flow prior to mechanical instability—necking—or fracture) and percent reduction in area. Fracture toughness is also some measure of potential ductility. Engineering materials exhibit wide variations in ductility which can often limit their application.

Ductility is a property of nanocrystalline materials which might be predicted to be enhanced by extrapolation of its grain-size dependence in conventional polycrystalline materials. It has been predicted that extrapolation of the grain size, or the scale of the microstructure, to the nanoscale will lead to both strengthening and an increase in ductility. As far as failure and ductility are concerned, this idea is based on experience with conventional materials, where the yield and fracture stress show different dependencies on the grain size. The fracture stress typically increases faster than the yield stress with decreasing grain size such that ductile/brittle transitions can occur. For example, the ductile / brittle transition temperature in mild steel can be lowered about 40°C by reducing the grain size by a factor of five. In terms of how ductility may be affected by the extreme grainsize reduction to the nanoscale, we consider the following. Firstly, it may be recalled that obtaining ductility relies simply on plastic deformation occurring without the catastrophic onset of failure mechanisms, and therefore we can examine possibilities of changing ductility in terms of avoiding failure.

Type
Mechanical Behavior of Nanostructured Materials
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Bohn, R., Haubold, T., Birringer, R., and Gleiter, H., Scripta Metall. Mater. 25 (1991) p. 811.CrossRefGoogle Scholar
2.Cottrell, A.H., Trans. Metall. Soc. AIME 212 (1958) p. 192.Google Scholar
3.Dieter, G.E., Mechanical Metallurgy (McGraw-Hill Book, New York, 1986) p. 260.Google Scholar
4.Morris, D.G., “Mechanical Behaviour of Nanostructured Materials,” in Materials Science Foundations, Series No. 2, edited by Magini, M. and Wohlbier, F.H. (Trans. Tech. Publications, Uetikon-Zurich, 1998).Google Scholar
5.Dieter, G.E., Mechanical Metallurgy (McGraw-Hill Book, New York, 1986) p. 289.Google Scholar
6.Chan, K.S., Scripta Metall. Mater. 24 (1990) p. 1725.CrossRefGoogle Scholar
7.Siegel, R.W., MRS Bulletin XV (10) (1990) p. 60.CrossRefGoogle Scholar
8.Koch, C.C., Nanostruc. Mater. 2 (1993) p. 109; Nanostruc. Mater. 9 (1997) p. 13.CrossRefGoogle Scholar
9.Nieman, G.W., Weertman, J.R., and Siegel, R.W., Scripta Metall. Mater. 24 (1990) p. 145.CrossRefGoogle Scholar
10.Nieman, G.W., Weertman, J.R., and Siegel, R.W., J. Mater. Res. 6 (1991) p. 1012.CrossRefGoogle Scholar
11.Sanders, P.G., Youngdahl, C.J., and Weertman, J.R., Mater. Sci. Eng. A 234-236 (1997) p. 77.CrossRefGoogle Scholar
12.Sanders, P.G., Eastman, J.A., and Weertman, J.R., Acta Mater. 45 (1997) p. 4019.CrossRefGoogle Scholar
13.Eastman, J.A., Choudry, M., Rittner, M.N., Youngdahl, C.J., Dollar, M., Weertman, J.R., DiMelfi, R.J., and Thompson, L.J., in Chemistry and Physics of Nanostructures and Related Non-Equilibrium Materials, edited by Ma, E., Fultz, B., Shull, R., Morral, J., and Nash, P. (The Minerals, Metals & Materials Society, Warrendale, PA, 1997) p. 173.Google Scholar
14.Zhang, J. and Ardell, A.J., J. Mater. Res. 6 (1991) p. 1950.CrossRefGoogle Scholar
15.Gertsman, V.Y., Hoffmann, M., Gleiter, H., and Birringer, R., Acta Metall. Mater. 42 (1994) p. 3539.CrossRefGoogle Scholar
16.Malow, T.R. and Koch, C.C., Metall. Mater. Trans. A 29 (1998).CrossRefGoogle Scholar
17.Wang, N., Wang, Z., Aust, K.T., and Erb, U., Mater. Sci. Eng. A 237 (1997) p. 15.CrossRefGoogle Scholar
18.Lu, K., Mater. Sci. Eng. Rep. 16 (1996) p. 161.CrossRefGoogle Scholar
19.Kimura, H., Philos. Mag. A73 (3) (1996) p. 723.CrossRefGoogle Scholar
20.Sui, M.L., Patu, S., and He, Y.Z., Scripta Metall. Mater. 25 (1991) p. 1537.CrossRefGoogle Scholar
21.Valiev, R.Z., Mater. Sci. Eng. A 234-236 (1997) p. 59.CrossRefGoogle Scholar
22.Schulson, E.M., Res. Mech. Lett. 1 (1981)p. 111.Google Scholar
23.Oehring, M., Appel, F., Pfullman, Th., and Bormann, R., Appl. Phys. Lett. 66 (1995) p. 941.CrossRefGoogle Scholar
24.Dymek, S., Dollar, M., Hwang, S.J., and Nash, P., Mater. Sci. Eng. A 152 (1992) p. 160.CrossRefGoogle Scholar
25.Jain, M. and Christman, T., Acta Metall. Mater. 42 (1994) p. 1901.CrossRefGoogle Scholar
26.Liu, C.T., McKamey, C.G., and Lee, E.H., Scripta Metall. 24 (1990) p. 385.CrossRefGoogle Scholar
27.Morris, M.A. and Leboeuf, M., Mater. Sci. Eng. A 224 (1997) p. 1.CrossRefGoogle Scholar
28.Morris, D.G., Dodge, A., and Morris, M.A., to be published.Google Scholar
29.Karch, J., Birringer, R., and Gleiter, H., Nature 330 (1987) p. 556.CrossRefGoogle Scholar
30.Fan, C. and Inoue, A., Mater. Trans. JIM 38 (1997) p. 1040.CrossRefGoogle Scholar
31.Fan, C. and Inoue, A., Mater. Sci. Eng. 39 (9) (1998).Google Scholar
32.Chen, H., Hi, Y., Shiflet, G.J., and Poon, S.J., Scripta Met. 25 (1991) p. 1421.CrossRefGoogle Scholar
33.Skorvanek, I., Gerling, R., Graf, T., Fricke, M., and Hesse, J., IEEE Trans. Magn. 30 (1994) p. 548.CrossRefGoogle Scholar
34.Inoue, A., Watanabe, M., Kimura, H.M., Takahashi, F.I., Nagata, A., and Masumoto, T., Mater. Trans. JIM 33 (1992) p. 723.CrossRefGoogle Scholar
35.Inoue, A., in New Horizons in Quasicrystals, edited by Alau, I.et al. (World Scientific, Singapore, 1997) p. 256.Google Scholar
36.Inoue, A., Kimura, H.M., Sasamori, K., and Masumoto, T., Int. J. Rapid Solidification 9 (1996) p. 103.Google Scholar
37.Günther, B., Baalman, A., and Weiss, H., in Physical Phenomena in Granular Materials, edited by Cody, G.D., Geballe, T.H., and Sheng, P. (Mater. Res. Soc. Symp. Proc. 195, Pittsburgh, 1990) p. 611.Google Scholar
38.Nieman, G.W., Weertman, J.R., and Siegel, R.W., in Clusters and Cluster-Assembled Materials, edited by Aberback, R.S., Bernholc, J., and Nelson, D.L. (Mater. Res. Soc. Symp. Proc. 206, Pittsburgh, 1991) p. 581.Google Scholar
39.Sanders, P.G., Eastman, J.A., and Weertman, J.R., in Processing and Properties of Nanocrystalline Materials, edited by Suryanarayana, C., Singh, J., and Froes, F.H. (The Minerals, Metals, & Materials Society, Warrendale, PA, 1996) p. 379.Google Scholar
40.Morris, D.G. and Morris, M.A., Acta Metall Mater. 39 (1991) p. 1763.CrossRefGoogle Scholar
41.Liang, G., Li, Z., and Wang, E., J. Mater. Sci. (1996).Google Scholar