Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-24T07:20:12.452Z Has data issue: false hasContentIssue false

Dual-stimulus magnetoelectric energy harvesting

Published online by Cambridge University Press:  09 March 2018

Zhaoqiang Chu
Affiliation:
Department of Materials Science and Engineering, Peking University, China; [email protected]
Venkateswarlu Annapureddy
Affiliation:
CSIR-National Physical Laboratory, India; [email protected]
MohammadJavad PourhosseiniAsl
Affiliation:
Department of Materials Science and Engineering, Peking University, China; [email protected]
Haribabu Palneedi
Affiliation:
Korea Institute of Materials Science, South Korea; [email protected]
Jungho Ryu
Affiliation:
School of Materials Science and Engineering, Yeungnam University, South Korea; [email protected]
Shuxiang Dong
Affiliation:
Department of Materials Science and Engineering, Peking University, China; [email protected]
Get access

Abstract

Harvesting energy from otherwise wasted resources has been intensively investigated as a promising technology especially for enabling the deployment of autonomous wireless-sensor networks for the Internet of Things. Multi-stimulus energy harvesting, simultaneously from different energy sources, provides an attractive opportunity to amplify the power density of harvesters, thereby extending their potential for self-powered devices. In this article, we review recent and ongoing research efforts aimed at enhancing the energy-harvesting performance of magnetoelectric (ME) composite harvesters employing dual stimuli, mechanical vibrations, and magnetic fields. After a brief introduction to vibration, magnetic field, and dual-mode energy harvesting, we survey the key materials utilized for ME energy harvesting. We then focus on progress in this area and discuss relevant ideas to realize electromechanical and magnetoelectric coupling for harvesting energy from mechanical vibrations and magnetic fields simultaneously. We provide perspectives and future directions as well.

Type
Materials for Energy Harvesting
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Beeby, S.P., Tudor, M.J., White, N.M., Meas. Sci. Technol. 17, R175 (2006).CrossRefGoogle Scholar
Priya, S., J. Electroceram. 19, 165 (2007).Google Scholar
Harne, R.L., Wang, K.W., Smart Mater. Struct. 22, 023001 (2013).CrossRefGoogle Scholar
Shaikh, F.K., Zeadally, S., Renew. Sustain. Energy Rev. 55, 1041 (2016).CrossRefGoogle Scholar
Tan, Y.K., Panda, S.K., IEEE Trans. Ind. Electron. 58, 4424 (2011).CrossRefGoogle Scholar
Hu, Y., Xu, Y., Appl. Phys. Lett. 104, 053902 (2014).CrossRefGoogle Scholar
Anton, S.R., Sodano, H.A., Smart Mater. Struct. 16, R1 (2007).CrossRefGoogle Scholar
Zhu, D., Tudor, M.J., Beeby, S.P., Meas. Sci. Technol. 21, 022001 (2010).CrossRefGoogle Scholar
Wu, J., Shi, H., Zhao, T., Yu, Y., Dong, S., Adv. Funct. Mater. 26, 7186 (2016).CrossRefGoogle Scholar
Yeo, H.G., Ma, X., Rahn, C., Trolier-McKinstry, S., Adv. Funct. Mater. 26, 5940 (2016).CrossRefGoogle Scholar
Eom, C.-B., Trolier-McKinstry, S., MRS Bull. 37, 1007 (2012).CrossRefGoogle Scholar
Chu, Z., Shi, H., PourhosseiniAsl, M., Wu, J., Shi, W., Gao, X., Yuan, X., Dong, S., Sci. Rep. 7, 8592 (2017).CrossRefGoogle Scholar
Chu, Z., Shi, H., Shi, W., Liu, G., Wu, J., Yang, J., Dong, S., Adv. Mater. 29, 1606022 (2017).CrossRefGoogle Scholar
Erturk, A., Hoffmann, J., Inman, D.J., Appl. Phys. Lett. 94, 254102 (2009).CrossRefGoogle Scholar
Manna, B.P., Simsb, N.D., J. Sound Vib. 319, 515 (2009).CrossRefGoogle Scholar
Liu, G., Ci, P., Dong, S., Appl. Phys. Lett. 104, 032908 (2014).CrossRefGoogle Scholar
Ryu, J., Kang, J.-E., Zhou, Y., Choi, S.-Y., Yoon, W.-H., Park, D.-S., Choi, J.-J., Hahn, B.-D., Ahn, C.-W., Kim, J.-W., Kim, Y.-D., Priya, S., Lee, S.Y., Jeong, S., Jeong, D.-Y., Energy Environ. Sci. 8, 2402 (2015).CrossRefGoogle Scholar
Khaligh, A., Zeng, P., Zheng, C., IEEE Trans. Ind. Electron. 57, 850 (2010).CrossRefGoogle Scholar
Li, P., Wen, Y., Chaobo, J., Xinshen, L., IEEE Trans. Ind. Electron. 58, 2944 (2011).CrossRefGoogle Scholar
Dong, S., Zhai, J., Li, J.F., Viehland, D., Priya, S., Appl. Phys. Lett. 93, 103511 (2008).CrossRefGoogle Scholar
Zhai, J., Xing, Z., Dong, S., Li, J., Viehland, D., J. Am. Ceram. Soc. 91, 351 (2008).CrossRefGoogle Scholar
Madelung, O., Rössler, U., Schulz, M., Eds., Group IV Elements, IV-IV and III-V Compounds, Part B—Electronic, Transport, Optical and Other Properties, Semiconductors (Springer, Berlin, 2001).Google Scholar
Tumanski, S., Handbook of Magnetic Measurements (CRC Press, Boca Raton, FL, 2011).CrossRefGoogle Scholar
Dong, S., Li, J., Viehland, D., J. Appl. Phys. 95, 5 (2004).Google Scholar
Lou, J., Liu, M., Reed, D., Ren, Y., Sun, N.X., Adv. Mater. 21, 4711 (2009).CrossRefGoogle Scholar
Zhou, Y., Apo, D.J., Priya, S., Appl. Phys. Lett. 103, 192909 (2013).CrossRefGoogle Scholar
Zhou, Y., Apo, D.J., Sanghadasa, M., Bichurin, M., Petrov, V.M., Priya, S., “Magnetoelectric Energy Harvester,” in Composite Magnetoelectrics, Srinivasan, G., Priya, S., Sun, N.X., Eds. (Woodhead Publishing, Cambridge, UK, 2015), chap. 7, pp. 161207.CrossRefGoogle Scholar
Kim, S.-G., Priya, S., Kanno, I., MRS Bull. 37, 1039 (2012).CrossRefGoogle Scholar
Lin, J.T., Lee, B., Alphenaar, B., Smart Mater. Struct. 19, 045012 (2010).CrossRefGoogle Scholar
Hajati, A., Kim, S.G., Appl. Phys. Lett. 99, 083105 (2011).CrossRefGoogle Scholar
Marinkovic, B., Kosera, H., Appl. Phys. Lett. 94, 103505 (2009).CrossRefGoogle Scholar
Yang, J., Wen, Y., Li, P., Dai, X., Sens. Actuators A Phys. 168, 358 (2011).CrossRefGoogle Scholar
Li, M., Wen, Y., Li, P., Yang, J., Dai, X., Sens. Actuators A Phys. 166, 102 (2011).CrossRefGoogle Scholar
Bai, X., Wen, Y., Yang, J., Li, P., Qiu, J., Zhu, Y., J. Appl. Phys. 111, 07A938 (2012).Google Scholar
Yang, J., Wen, Y., Li, P., Yue, X., Yu, Q., Bai, X., Appl. Phys. Lett. 103, 243903 (2013).CrossRefGoogle Scholar
Lin, Z., Chen, J., Li, X., Li, J., Liu, J., Awais, Q., Yang, J., Appl. Phys. Lett. 109, 253903 (2016).CrossRefGoogle Scholar
Kambale, R.C., Kang, J.-E., Yoon, W.-H., Park, D.-S., Choi, J.-J., Ahn, C.-W., Kim, J.-W., Hahn, B.-D., Jeong, D.-Y., Kim, Y.-D., Dong, S., Ryu, J., Energy Harvest. Syst. 1, 3 (2014).Google Scholar
Patil, D.R., Zhou, Y., Kang, J.-E., Sharpes, N., Jeong, D.-Y., Kim, Y.-D., Kim, K.H., Priya, S., Ryu, J., APL Mater. 2, 46102 (2014).CrossRefGoogle Scholar
Kambale, R.C., Yoon, W.-H., Park, D.-S., Choi, J.-J., Ahn, C.-W., Kim, J.-W., Hahn, B.-D., Jeong, D.-Y., Lee, B.C., Chung, G.-S., Ryu, J., J. Appl. Phys. 113, 204108 (2013).CrossRefGoogle Scholar
Gupta, R., Tomar, M., Rammohan, S., Katiyar, R.S., Gupta, V., Appl. Phys. Lett. 109, 193901 (2016).CrossRefGoogle Scholar
Supplementary material: PDF

Chu et al. supplementary material 1

Supplementary Table

Download Chu et al. supplementary material 1(PDF)
PDF 66.5 KB