Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-26T18:06:51.553Z Has data issue: false hasContentIssue false

Dissipation of radiation energy in concentrated solid-solution alloys: Unique defect properties and microstructural evolution

Published online by Cambridge University Press:  10 October 2019

Yanwen Zhang
Affiliation:
Materials Science and Technology Division, Oak Ridge National Laboratory, and Department of Materials Science and Engineering, The University of Tennessee, Knoxville, USA; [email protected]
Takeshi Egami
Affiliation:
Department of Materials Science and Engineering and Department of Physics and Astronomy, The University of Tennessee, Knoxville, and Materials Science and Technology Division, Oak Ridge National Laboratory, USA; [email protected]
William J. Weber
Affiliation:
Department of Materials Science and Engineering, The University of Tennessee, Knoxville, and Materials Science and Technology Division, Oak Ridge National Laboratory, USA; [email protected]
Get access

Abstract

The effort to develop metallic alloys with increased structural strength and improved radiation performance has focused on the incorporation of either solute elements or microstructural inhomogeneities to mitigate damage. The recent discovery and development of single-phase concentrated solid-solution alloys (SP-CSAs) has prompted fundamental questions that challenge established theories and models currently applicable to conventional alloys. The current understanding of electronic and atomic effects, defect evolution, and microstructure progression suggests that radiation energy dissipates in SP-CSAs at different interaction strengths via energy carriers (electrons, phonons, and magnons). Modification of electronic- and atomic-level heterogeneities and tailoring of atomic transport processes can be realized through tuning of the chemical complexity of SP-CSAs by the selection of appropriate elements and their concentrations. Fundamental understanding of controlling energy dissipation via site-to-site chemical complexity reveals new design principles for predictive discovery and guided synthesis of new alloys with targeted functionalities, including radiation tolerance.

Type
Technical Feature
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

OECD International Energy Agency World Energy Outlook 2018, https://www.iea.org/weo (accessed January 2019).Google Scholar
Brailsford, A.D., Bullough, R., Hayns, M.R., J. Nucl. Mater. 60, 246 (1976).CrossRefGoogle Scholar
Beyerlein, I., Caro, A., Demkowicz, M., Mara, N., Misra, A., Uberuaga, B., Mater. Today 16, 443 (2013).10.1016/j.mattod.2013.10.019CrossRefGoogle Scholar
Mansur, L.K., Lee, E.H., J. Nucl. Mater. 179–181, 105 (1991).CrossRefGoogle Scholar
Yeh, J.W., Ann. Chimie Sci. Materiaux 31, 633 (2006).CrossRefGoogle Scholar
Miracle, D., Senkov, O., Acta Mater . 122, 448 (2017).CrossRefGoogle Scholar
Cantor, B., Entropy 16, 4749 (2014).CrossRefGoogle Scholar
Wu, Z., Bei, H., Otto, F., Pharr, G.M., George, E.P., Intermetallics 46, 131 (2014).CrossRefGoogle Scholar
Zhang, Y., Stocks, G.M., Jin, K., Lu, C., Bei, H., Sales, B.C., Wang, L., Béland, L.K., Stoller, R.E., Samolyuk, G.D., Caro, M., Caro, A., Weber, W.J., Nat. Commun. 6, 8736 (2015).CrossRefGoogle Scholar
Zhang, Y., Zhao, S., Weber, W.J., Nordlund, K., Granberg, F., Djurabekova, F., Curr. Opin. Solid State Mater. Sci. 21, 221 (2017).CrossRefGoogle Scholar
Basic Energy Sciences Advisory Committee, Directing Matter and Energy: Five Challenges for Science and the Imagination (US Department of Energy Office of Science, Washington, DC, 2007), https://www.osti.gov/biblio/935427.Google Scholar
Zhao, S., Egami, T., Stocks, M., Zhang, Y., Phys. Rev. Mater. 2, 013602 (2018).CrossRefGoogle Scholar
Osetskiy, Y.N., Beland, L., Barashev, A., Zhang, Y., Curr. Opin. Solid State Mater. Sci. 22, 65 (2018).CrossRefGoogle Scholar
Granberg, F., Nordlund, K., Ullah, M.W., Jin, K., Lu, C., Bei, H., Wang, L., Djurabekova, F., Weber, W.J., Zhang, Y., Phys. Rev. Lett. 116, 135504 (2016).CrossRefGoogle Scholar
Lu, C., Niu, L., Chen, N., Jin, K., Yang, T., Xiu, P., Zhang, Y., Gao, F., Bei, H., Shi, S., He, M.R., Robertson, I.M., Weber, W.J., Wang, L., Nat. Commun. 7, 13564 (2016).CrossRefGoogle Scholar
Jin, K., Sales, B.C., Stocks, G.M., Samolyuk, G.D., Daene, M., Weber, W.J., Zhang, Y., Bei, H., Sci. Rep. 6, 20159 (2016).CrossRefGoogle Scholar
Mu, S., Samolyuk, G.D., Wimmer, S., Troparevsky, M.C., Khan, S., Mankovsky, S., Ebert, H., Stocks, G.M., NPJ Comput. Mater. 5, 1 (2019).CrossRefGoogle Scholar
Mu, S., Yin, J., Samolyuk, G.D., Wimmer, S., Pei, Z., Eisenbach, M., Mankovsky, S., Ebert, H., Stocks, G.M., Phys. Rev. Mater. 3, 014411 (2019).CrossRefGoogle Scholar
Warren, B.E., X-Ray Diffraction (Addison-Wesley, Reading, PA, 1969).Google Scholar
Egami, T., Billinge, S.J.L., Underneath the Bragg Peaks: Structural Analysis of Complex Materials (Pergamon Press, Elsevier Ltd., Oxford, UK, 1st ed. 2003, 2nd ed. 2012).CrossRefGoogle Scholar
Zhang, F., Zhao, S., Jin, K., Xue, H., Velisa, G., Bei, H., Huang, R., Ko, J., Pagan, D., Neuefeind, J., Weber, W.J., Zhang, Y., Phys. Rev. Lett. 118, 205501 (2017).CrossRefGoogle ScholarPubMed
Tong, Y., Zhao, S., Bei, H., Egami, T., Zhang, Y., Zhang, F., arXiv:1902.09279 (2019).Google Scholar
Tong, Y., Jin, K., Bei, H., Ko, J.Y.P., Pagan, D.C., Zhang, Y., Zhang, F.X., Mater. Des. 155, 1 (2018).CrossRefGoogle Scholar
Tong, Y., Velisa, G., Zhao, S., Guo, W., Yang, T., Jin, K., Lu, C., Bei, H., Ko, J.Y.P., Pagan, D.C., Zhang, Y., Wang, L., Zhang, F.X., Materialia 2, 73 (2018).CrossRefGoogle Scholar
Zhang, F.X., Tong, Y., Jin, K., Bei, H., Weber, W.J., Huq, A., Lanzirott, T., Newville, M., Pagan, D.C., Ko, J.Y.P., Zhang, Y., Mater. Res. Lett. 6, 450 (2018).CrossRefGoogle Scholar
Labusch, R., Phys. Status Solidi 41, 659 (1970).CrossRefGoogle Scholar
Varvenne, C., Luque, A., Curtin, W.A., Acta Mater . 118, 164 (2016).CrossRefGoogle Scholar
Varvenne, C., Leyson, G., Ghazisaeidi, M., Curtin, W.A., Acta Mater . 124, 660 (2017).CrossRefGoogle Scholar
Egami, T., Prog. Mater. Sci. 56, 637 (2011).CrossRefGoogle Scholar
Oh, H.S., Kim, S.J., Odbadrakh, K., Ryu, W.H., Yoon, K.N., Mu, S., Körmann, F., Ikeda, Y., Tasan, C.C., Raabe, D., Egami, T., Park, E.S., Nat. Commun. 10, 2090 (2019).CrossRefGoogle Scholar
Zhao, S., Osetsky, Y., Stocks, G.M., Zhang, Y., NPJ Comput. Mater. 5, 13 (2019).CrossRefGoogle Scholar
Zhang, Y.H., Zhuang, Y., Hu, A., Kai, J.J., Liu, C.T., Scr. Mater. 130, 96 (2017).CrossRefGoogle Scholar
Andersen, H.H., Sigmund, P., Nucl. Instrum. Methods Phys. Res. B 195, 1 (2002).CrossRefGoogle Scholar
Ullah, R., Artacho, E., Correa, A., Phys. Rev. Lett. 121, 116401 (2018).10.1103/PhysRevLett.121.116401CrossRefGoogle Scholar
Tamm, A., Caro, M., Caro, A., Samolyuk, G.D., Klintenberg, M., Correa, A., Phys. Rev. Lett. 120, 185501 (2018).CrossRefGoogle Scholar
Zarkadoula, E., Samolyuk, G.D., Xue, H., Bei, H., Weber, W.J., Scr. Mater. 124, 6 (2016).CrossRefGoogle Scholar
Leino, A.A., Samolyuk, G.D., Sachan, R., Granberg, F., Weber, W.J., Bei, H., Lie, J., Zhai, P., Zhang, Y., Acta Mater . 151, 191 (2018).CrossRefGoogle Scholar
Sachan, R., Ullah, M.W., Chisholm, M.F., Liu, J., Zhai, P., Schauries, D., Kluth, P., Trautman, C., Bei, H., Weber, W.J., Zhang, Y., Mater. Des. 150, 1 (2018).CrossRefGoogle Scholar
Sellami, N., Debelle, A., Ullah, M.W., Christen, H.M., Keum, J.K., Bei, H., Xue, H., Weber, W.J., Zhang, Y., Curr. Opin. Solid State Mater. Sci. 23, 107 (2019).CrossRefGoogle Scholar
Jin, K., Zhang, C., Zhang, F., Bei, H., Mater. Res. Lett. 6, 293 (2018).CrossRefGoogle Scholar
Barashev, A.V., Osetsky, Y.N., Bei, H., Lu, C., Wang, L., Zhang, Y., Curr. Opin. Solid State Mater. Sci. (forthcoming).Google Scholar
Béland, L.K., Osetsky, Y.N., Stoller, R.E., NPJ Comput. Mater. 2, 16007 (2016).CrossRefGoogle Scholar
Stoller, R.E., Tamm, A., Béland, L.K., Samolyuk, G.D., Stocks, G.M., Caro, A., Slipchenko, L.V., Osetsky, Y.N., Aabloo, A., Klintenberg, M., Wang, Y., J. Chem. Theory Comput. 12, 2871 (2016).CrossRefGoogle Scholar
Zhao, S., Stocks, G.M., Zhang, Y., Phys. Chem. Chem. Phys. 18, 24043 (2016).CrossRefGoogle Scholar
Velişa, G., Wendler, E., Zhao, S., Jin, K., Bei, H., Weber, W.J., Zhang, Y., Mater. Res. Lett. 6, 136 (2018).CrossRefGoogle Scholar
Lu, C., Yang, T., Niu, L., Peng, Q., Jin, K., Crespillo, M.L., Velisa, G., Xue, H., Zhang, F., Xiu, P., Zhang, Y., Gao, F., Bei, H., Weber, W.J., Wang, L., J. Nucl. Mater. 509, 237 (2018).CrossRefGoogle Scholar
Yang, T., Lu, C., Velisa, G., Jin, K., Xiu, P., Crespillo, M., Zhang, Y., Bei, H., Wang, L., Acta Mater . 151, 159 (2018).CrossRefGoogle Scholar
Shi, S., He, M.-R., Jin, K., Bei, H., Robertson, I.M., J. Nucl. Mater. 501, 132 (2018).CrossRefGoogle Scholar
Yang, T., Lu, C., Velisa, G., Jin, K., Xiu, P., Zhang, Y., Bei, H., Wang, L., Scr. Mater. 158, 57 (2019).CrossRefGoogle Scholar
Lu, C., Yang, T., Jin, K., Velisa, G., Xiu, P., Song, M., Peng, Q., Gao, F., Zhang, Y., Bei, H., Weber, W.J., Wang, L., Mater. Res. Lett. 6, 584 (2018).CrossRefGoogle Scholar
Fan, Z., Zhao, S., Jin, K., Chen, D., Osetskiy, Y., Wang, Y., Bei, H., More, K., Zhang, Y., Acta Mater . 164, 283 (2019).CrossRefGoogle Scholar
Wang, X., Jin, K., Chen, D., Bei, H., Wang, Y., Weber, W.J., Zhang, Y., More, K.L., Materialia 5, 100183 (2019).CrossRefGoogle Scholar
Egami, T., Ojha, M., Khorgolkhuu, O., Nicholson, D.M., Stocks, G.M., JOM 67, 2345 (2015).CrossRefGoogle Scholar
Nagase, T., Anada, S., Rack, P.D., Noh, J.H., Yasuda, H., Mori, H., Egami, T., Intermetallics 26, 122 (2012).CrossRefGoogle Scholar
Nagase, T., Rack, P.D., Noh, J.H., Egami, T., Intermetallics 59, 32 (2015).CrossRefGoogle Scholar