Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-25T04:01:13.876Z Has data issue: false hasContentIssue false

Directing the Assembly of Molecular Crystals

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

Crystalline materials made from molecular components can possess useful properties that can be tailored through judicious selection of their molecular building blocks.The utility of these materials, however, depends on molecular packing in the crystal lattice as well as the properties of the individual molecules themselves. Consequently, further advances hinge on our ability to manipulate solid-state structure in a rational and systematic manner. Although computational prediction of crystal structure remains elusive, empirical guidelines for assembling molecules into preordained crystal architectures are emerging rapidly. This article briefly describes the current state of the field, emphasizing the design of crystalline materials with structures reinforced by a twodimensional hydrogen-bonded network, which serves as a platform for the synthesis of a diverse collection of compounds. These include host frameworks with cavities supported by organic “pillars” that can be interchanged to manipulate the size, shape, and character of the inclusion cavities as well as the overall lattice architecture and metrics. This research has revealed some principles for crystal design that may prove useful in general while enabling exploration of the utility of these compounds.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Dunitz, J.D. and Gavezzotti, A., Angew. Chem. Int. Ed. 44 (2005) p. 1766.CrossRefGoogle Scholar
2.Desiraju, G., Nature Mater. 1 (2002) p. 77.CrossRefGoogle Scholar
3.Dunitz, J.D., Chem. Commun. (2003) p. 545.Google Scholar
4.Dunitz, J.D. and Scheraga, H.A., Proc. Nat. Acad. Sci. USA 102 (2004) p. 14309.CrossRefGoogle Scholar
5.Bernstein, J., Polymorphism in Molecular Crystals (Oxford University Press, Oxford, 2002).Google Scholar
6.Etter, M.C. and Huang, K.S., Chem. Mater. 4 (1992) p. 824; S.R. Marder, J.W. Perry, and W.P. Schaefer, Science 245 (1989) p. 626; W. Lin, Z.Wang, and L. Ma, J. Am. Chem. Soc. 121 (1999) p. 11249; W. Lin, O.R. Evans, R.-G. Xiong, and Z. Wang, J. Am. Chem. Soc. 120 (1998) p. 13272.CrossRefGoogle Scholar
7.Miller, J.S., Adv. Mater. 14 (2002) p. 1105; M. Pilkington and S. Decurtins, Persp. Supramol. Chem. 7 (2003) p. 275; O. Kahn, Molecular Magnetism (Wiley VCH, New York, 1993).3.0.CO;2-K>CrossRefGoogle Scholar
8.Bendikov, M., Wudl, F., and Perepichka, D.F., Chem. Rev. 104 (2004) p. 4891.CrossRefGoogle Scholar
9.Kondo, M., Shimamura, M., Noro, S., Minakoshi, S., Asami, A., Seki, K., and Kitagawa, S., Chem. Mater. 12 (2000) p. 1288; J.L.C. Rowsell, A.R. Millward, K.S. Park, and O.M. Yaghi, J. Am. Chem. Soc. 126 (2004) p. 5666; P. Sozzani, S. Bracco, A. Comotti, L. Ferretti, and R. Simonutti, Angew. Chem. Int. Ed. 44 (2005) p. 1816; B. Kesanli, Y. Cui, M.R. Smith, E.W. Bittner, B.C. Brockrath, and W. Lin, Angew. Chem. Int. Ed. 44 (2004) p. 72.CrossRefGoogle Scholar
10.Seo, J.S., Whang, D., Lee, H., Jun, S.I., Oh, J., Jeon, Y.J., and Kim, K., Nature 404 (2000) p. 982.CrossRefGoogle Scholar
11.Ngo, H.L., Lin, W., Top. Catal. 34 (2005) p. 85; K. Endo, T. Koike, T. Sawaki, O. Hayashida, H. Masuda, and Y. Aoyama, J. Am. Chem. Soc. 119 (1997) p. 4117.CrossRefGoogle Scholar
12.Schmidt, G.M.J., Pure Appl. Chem. 27 (1971) p. 647.CrossRefGoogle Scholar
13.Ermer, O., J. Am. Chem. Soc. 110 (1988) p. 3747; Y. Aoyama, K. Endo, T. Anzai, Y. Yamaguchi, T. Sawaki, K. Kobayashi, N. Kanehisa, H. Hashimoto, Y. Kai, and H. Masuda, J. Am. Chem. Soc. 118 (1996) p. 5562; P. Brunet, M. Simard, and J.D. Wuest, J. Am. Chem. Soc. 119 (1997) p. 2737; A.K. Cheetham and C.N.R. Rao, MRS Bull. 30 (2005) p. 93; S.S.-Y. Chui, S.M.-F. Lo, J.P.H. Charmant, A.G. Orpen, and I.D. Williams, Science 283 (1999) p. 1148; N.W. Ockwig, O. Delgado-Friedrichs, M. O'Keeffe, and O.M Yaghi, Acc. Chem. Res. 38 (2005) p. 176; R. Robson, Dalton 21 (2000) p. 3735; A.B. Mallik, S. Lee, and E.B. Lobkovsky, Cryst. Growth Des. 5 (2005) p. 609; M.W. Hosseini, Acc. Chem. Res. 38 (2005) p. 313.CrossRefGoogle Scholar
14.Shacklady, D., Lee, S.-O., Ferlay, S., Hosseini, M.W., and Ward, M.D., Cryst. Growth. Des. 5 (2005) p. 995.Google Scholar
15.Weber, E., in Topics in Current Chemistry, Vol. 140 (Springer-Verlag, Berlin, 1987); J.A., Atwood, J.E.D., Davies, and D.D., MacNicol, eds., Inclusion Compounds: Structural aspects of inclusion compounds formed by organic host lattices, Vol. 2 (Academic, London, 1984); R. Bishop, Chem. Soc. Rev. (1996) p. 311.Google Scholar
16.Russell, V.A., Etter, M.C., and Ward, M.D., J. Am. Chem. Soc. 116 (1994) p. 1941.CrossRefGoogle Scholar
17.Russell, V.A., Evans, C., Li, W., and Ward, M.D., Science 276 (1997) p. 575.CrossRefGoogle Scholar
18.Horner, M.J., Holman, K.T., and Ward, M.D., Angew. Chem. 40 (2001) p. 4045.3.0.CO;2-J>CrossRefGoogle Scholar
19.Swift, J.A., Pivovar, A.M., and Reynolds, A.M., J. Am. Chem. Soc. 24 (1998) p. 5887; C.C. Evans, L. Sukarto, and M.D. Ward, J. Amer. Chem. Soc. 121 (1999) p. 320; K.T. Holman, S.M. Martin, D.P. Parker, and M.D. Ward, J. Am. Chem. Soc. 123 (2001) p. 4421.CrossRefGoogle Scholar
20.Holman, K.T., Pivovar, A.M., Swift, J.A., and Ward, M.D., Acc. Chem. Res. 34 (2001) p. 107.CrossRefGoogle Scholar
21.Caira, M.R., Nassimbeni, L.R., Vujovic, D., and Toda, F., J. Phys. Org. Chem. 13 (2000) p. 75; M.R. Caira, L.R. Nassimbeni, F. Toda, and D. Vujovic, J. Am. Chem. Soc. 122 (2000) p. 9367.3.0.CO;2-A>CrossRefGoogle Scholar
22.Pivovar, A.M., Holman, K.T., and Ward, M.D., Chem. Mater. 13 (2001) p. 3018.CrossRefGoogle Scholar
23.Inui, T. and Pu, B., Sep. Technol. 5 (1995) p. 229; L. Ellis, R. Alexander, and R.I. Kagi, Org. Geochem. 21 (1994) p. 849; Y. Iwai, H. Uchida, Y. Mori, H. Higashi, T. Matsuki, T. Furuya, Y. Arai, K. Yamamoto, and M. Yutaka, Ind. Eng. Chem. Res. 33 (1994) p. 2157; L. Born and R. Fuchs, Angew. Chem. Int. Ed. Engl. 30 (1991) p. 1634; H. Takaba, M. Katagiri, M Kubo, R. Vetrivel, and A. Miyamoto, Microporous Mater. 3 (1995) p. 449.CrossRefGoogle Scholar
24.Barber, J.B. and Siddiqui, A.A., Polym. Prep. 39 (1998) p. 648; M. Ohno, T. Toshikazu, and T. Endo, J. Polym. Sci., Part A 33 (1995) p. 2647.Google Scholar
25.Holman, K.T. and Ward, M.D., Angew. Chem. Int. Ed. 39 (2000) p. 1653.3.0.CO;2-7>CrossRefGoogle Scholar
26.Curtin, D.Y. and Paul, I.C., Chem. Rev. 81 (1981) p. 525.CrossRefGoogle Scholar
27.Holman, K.T., Pivovar, A.M., and Ward, M.D., Science 294 (2001) p. 1907.CrossRefGoogle Scholar
28.Chandrasekhar, S., Liquid Crystals (Cambridge University Press, Cambridge, UK, 1992).CrossRefGoogle Scholar
29.Mathevet, F., Masson, P., Nicoud, J.-F., and Skoulios, A., Chem. Eur. J. 8 (2002) p. 2248.3.0.CO;2-B>CrossRefGoogle Scholar
30.Martin, S.M., Yonezawa, Y., Horner, M.J., Macosko, C.W., and Ward, M.D., Chem. Mater. 16 (2004) p. 3045.CrossRefGoogle Scholar
31.Yonezawa, Y., Martin, S.M., Macosko, C.W., and Ward, M.D., Macromolecules 7 (2004) p. 6424.CrossRefGoogle Scholar
32.Martin, S.A. and Ward, M.D., Langmuir 21 (2005) p. 5324.CrossRefGoogle Scholar